Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (6): 1128-1136    DOI: 10.3785/j.issn.1008-973X.2023.06.008
    
Combination optimization of induction control parameters based on orthogonal test
Zhi-jian WANG(),Shun-zhong LONG,Ying-hong LI
School of Electrical and Control Engineering, North China University of Technology, Beijing 100144, China
Download: HTML     PDF(1120KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the intersection with large fluctuation of random traffic, an optimal induction control strategy was proposed, and the orthogonal test method was used to obtain the optimal combination of control parameters. The maximum queuing length was used as the traffic demand threshold to optimize the induction control logic, and the three phase switching mechanisms (priority queuing, priority delay and fixed order) were added to the induction control parameter combination. In the SUMO simulation, the intersection environment of Beichen West Road and Kehui South Road in Beijing was simulated, and the optimal parameter combination of induction control under each traffic flow was selected by using the orthogonal test method. A comparative experiment was designed to verify the effectiveness of the optimal parameter combination, and the optimal parameter combination was applied to the deep Q-network (DQN) algorithm to further optimize the induction control. Results show that the optimal parameter combination can be obtained quickly and effectively by using the orthogonal test method. Under the low and the medium traffic flow, compared with the DQN algorithm without optimal parameter combination, the convergence speed of the DQN algorithm using the optimal parameter combination increase by 48.14% and 38.89% respectively, and the average cumulative vehicle delay decrease by 8.45% and 7.09% respectively.



Key wordssignalized intersection      induction control      influencing parameter      orthogonal test      deep Q-network (DQN) algorithm     
Received: 06 June 2022      Published: 30 June 2023
CLC:  TP 181  
Fund:  国家自然科学基金资助项目(72071003)
Cite this article:

Zhi-jian WANG,Shun-zhong LONG,Ying-hong LI. Combination optimization of induction control parameters based on orthogonal test. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1128-1136.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.06.008     OR     https://www.zjujournals.com/eng/Y2023/V57/I6/1128


基于正交试验的感应控制参数组合优化

针对随机流量波动较大的交叉口,提出优化感应控制策略,采用正交试验方法获取最优控制参数组合. 将最大排队长度作为通行需求阈值来优化感应控制逻辑,将设置的3种相位切换机制(优先排队、优先延误和固定顺序)加入感应控制参数组合中. 在SUMO仿真中,模拟北京市北辰西路与科荟南路交叉口环境,采用正交试验方法筛选出不同交通流量下感应控制的最优参数组合. 设计对比实验验证最优参数组合的有效性,将最优参数组合应用在深度Q学习(DQN)算法中进一步优化感应控制. 结果表明,正交试验方法能够快速有效地获取最优参数组合;在低、中等交通流量下,与未使用最优参数组合的DQN算法相比,使用最优参数组合的DQN算法的收敛速度分别增加了48.14%、38.89%,平均累计车均延误分别减少了8.45%、7.09%.


关键词: 信号交叉口,  感应控制,  影响参数,  正交试验,  深度Q学习(DQN)算法 
Fig.1 Layout of multi-target video tracking radar
Fig.2 Improved induction control flow chart
Fig.3 Intersection road channelization map
Fig.4 Intersection fixed phase diagram
方案号 时间段 TNS TNSL TEW T
1 7:00—9:00 72 18 54 162
2 9:00—12:00 67 18 41 144
3 12:00—16:00 66 18 42 144
4 16:00—17:00 67 20 39 144
5 17:00—19:00 79 25 40 162
6 19:00—21:00 62 18 40 138
Tab.1 Fixed timing plan for each time period s
pcu/h
交通流量组 时间段 QNS QNSL QEW Q
低流量 11:00—12:00 1050 310 298 1658
12:00—13:00 732 254 235 1220
13:00—14:00 895 266 268 1428
14:00—15:00 1013 324 342 1679
15:00—16:00 1134 379 400 1913
中等流量 10:00—11:00 1817 330 240 2387
16:00—17:00 1465 473 526 2464
19:00—20:00 1771 424 398 2593
20:00—21:00 1349 432 299 2080
高流量 7:00—8:00 2791 445 400 3636
8:00—9:00 2841 602 489 3932
9:00—10:00 2583 403 346 3331
17:00—18:00 2476 565 788 3830
18:00—19:00 2382 632 545 3558
Tab.2 Division results of traffic flow groups
Fig.5 Orthogonal test flow chart for screening influencing parameters
s
水平 相位顺序 Text Tmin Tmax-NS Tmax-NSL Tmax-EW
1 固定顺序 2 11 50 10 20
2 优先排队 3 15 60 15 30
3 优先延误 4 18 70 20 40
Tab.3 Orthogonal horizontal table of influencing parameters
交通流量组 时间段 Tavg /s
低流量 11:00—12:00 8.13
12:00—13:00 8.95
13:00—14:00 7.49
14:00—15:00 8.23
15:00—16:00 8.48
中等流量 10:00—11:00 16.68
16:00—17:00 12.25
19:00—20:00 17.25
20:00—21:00 13.23
高流量 7:00—8:00 19.76
8:00—9:00 23.03
9:00—10:00 19.09
17:00—18:00 29.10
18:00—19:00 26.08
Tab.4 Average intersection vehicle delay for each time period
交通
流量组
Pph Pext Pmin Pmax-NS Pmax-NSL Pmax-EW
低流量 0.048 0.020 0.184 0.035 0.785 0.716
中等流量 0.014 0.015 0.014 0.313 0.101 0.599
高流量 0.002 0.118 0.015 0.052 0.302 0.032
Tab.5 Significance level mean of each influencing parameter under different traffic flow
Fig.6 Average range value of each influencing parameter under different traffic flow groups
影响参数 低流量 中等流量 高流量
方差 极差 方差 极差 方差 极差
相位顺序 Y Y Y Y Y Y
单位绿灯延长时间 Y Y Y Y N N
最小绿灯时长 N N Y Y Y Y
南北直行最大绿灯时长增量 Y Y N N N Y
南北左转最大绿灯时长增量 N N N Y N Y
东西直左最大绿灯时长增量 N N N N Y Y
Tab.6 Significance of each influencing parameter on delay of each vehicle at intersection
s
交通
流量组
相位顺序 Text Tmin Tmax-NS Tmax-NSL Tmax-EW
低流量 优先排队 4 15 50 15 20
中等流量 优先延误 4 15 60 10 40
高流量 固定顺序 4 18 70 20 30
Tab.7 Optimal parameter combination table under different traffic flow groups
Fig.7 Average vehicle delay at intersections with different control strategies under three types of traffic flow
Fig.8 Comparison of average cumulative average vehicle delay of different control strategy under two types traffic flow
控制策略 低流量 中等流量
v TSUM /s v TSUM /s
固定方案 2 228 4 714
普通感应控制 27 2 181 36 4 635
最优感应控制 14 1 997 22 4 306
Tab.8 Comparison of effects of different control strategies under two types traffic flow
[2]   TIAN Zong, WANG Ao-bao A comprehensive review of traffic signal timing practice and techniques in the United States[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21 (5): 66- 76
[3]   YOSHIOKA T, SAKAKIBARA H, TENHAGEN R, et al Traffic signal control parameter calculation using probe data[J]. International Journal of Intelligent Transportation Systems Research, 2022, 20: 288- 298
doi: 10.1007/s13177-021-00292-z
[4]   YIN J, CHEN P, TANG K, et al. Queue intensity adaptive signal control for isolated intersection based on vehicle trajectory data [J]. Journal of Advanced Transportation, 2021: 8838922.
[5]   SHIRVANI M J, MALEKI H R. Maximum green time settings for traffic actuated signal control at isolated intersections using fuzzy logic [C]// 2015 4th Iranian Joint Congress on Fuzzy and Intelligent Systems. Zahedan: IEEE, 2016.
[6]   URBANIK T, TANAKA A, LOZNER B, et al. Signal timing manual: second edition [M]. [S.l.]: Transportation Research Board, 2015.
[7]   ZHANG G H, WANG Y H, et al Optimizing minimum and maximum green time settings for traffic actuated control at isolated intersections[J]. IEEE Transportation on Intelligent Transportation Systems, 2011, 12 (1): 164- 173
doi: 10.1109/TITS.2010.2070795
[8]   景泰. 随机条件下交叉口感应信号控制优化研究[D]. 兰州: 兰州交通大学, 2014.
JING Tai. Research on optimization of single intersection actuated control under stochastic conditions [D]. Lanzhou: Lanzhou Jiaotong University, 2014.
[9]   WANG X B, YIN K, LIU H Vehicle actuated signal performance under general traffic at an isolated intersection[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 582- 598
doi: 10.1016/j.trc.2018.08.002
[10]   罗小芹, 王殿海, 金盛 面向混合交通的感应式交通信号控制方法[J]. 吉林大学学报: 工学版, 2019, 49 (3): 695- 704
LUO Xiao-qin, WANG Dian-hai, JIN Sheng Traffic signal actuated control at isolated intersections for heterogeneous traffic[J]. Journal of Jilin University: Engineering and Technology Edition, 2019, 49 (3): 695- 704
[11]   徐洪峰, 柳爽, 张栋, 等 单点全感应式信号控制方法的参数取值[J]. 吉林大学学报: 工学版, 2019, 49 (1): 45- 52
[1]   周雅玲 城市交通信号控制方法综述[J]. 东南大学学报: 哲学社会科学版, 2015, 17 (Suppl.1): 61- 64
ZHOU Ya-ling A Survey of urban traffic signal co-ntrol methods[J]. Journal of Southeast University: Philosophy and Social Sciences Edition, 2015, 17 (Suppl.1): 61- 64
[11]   XU Hai-Feng, LIU Shuang, ZHANG Dong, et al Configuring parameters of fully actuated control at isolated signalized intersections[J]. Journal of Jilin University: Engineering and Technology Edition, 2019, 49 (1): 45- 52
[12]   刘家瑞. 考虑排队车辆的交叉口感应信号控制优化研究[D]. 北京: 北京交通大学, 2020.
LIU Jia-rui. Study on the optimization of actuated signal control considering queuing vehicles at intersections [D]. Beijing: Beijing Jiaotong University, 2020.
[13]   卢凯, 田鑫, 林观荣, 等 交叉口信号相位设置与配时同步优化模型[J]. 浙江大学学报: 工学版, 2020, 54 (5): 921- 930
LU Kai, TIAN Xin, LIN Guan-rong, et al Simultaneous optimization model of signal phase design and timing at intersection[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (5): 921- 930
[14]   王力, 张立立, 潘科, 等 基于状态可控性分析的交叉口信号切换控制[J]. 浙江大学学报: 工学版, 2016, 50 (7): 1266- 1275
WANG Li, ZHANG Li-li, PAN Ke, et al Traffic signal switching control approach based on state control ability analysis[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (7): 1266- 1275
[15]   ZENG J, HU J, YI Z. Adaptive traffic signal control with deep recurrent Q-learning [C]// 2018 IEEE Intelligent Vehicles Symposium (IV). Changshu: IEEE, 2018: 1215-1220.
[16]   GE H, SONG Y, WU C, et al Cooperative deep Q-learning with Q-value transfer for multi-intersection signal control[J]. IEEE Access, 2019, 7: 40797- 40809
doi: 10.1109/ACCESS.2019.2907618
[17]   徐建闽. 交通管理与控制[M]. 北京: 人民交通出版社, 2007.
[18]   LI L, LV Y S, WANG F Y Traffic signal timing via deep reinforcement learning[J]. IEEE/CAA Journal of Automatica Sinica, 2016, 3 (3): 247- 254
doi: 10.1109/JAS.2016.7508798
[19]   刘志, 曹诗鹏, 沈阳, 等 基于改进深度强化学习方法的单交叉口信号控制[J]. 计算机科学, 2020, 47 (12): 226- 232
LIU Zhi, CAO Shi-peng, SHENG Yang, et al Single control of single intersection based on improved deep reinforcement learning method[J]. Computer Science, 2020, 47 (12): 226- 232
doi: 10.11896/jsjkx.200300021
[20]   MNIH V, KAVUKCUOGLU K, SILVER D, et al Human-level control through deep reinforcement learning[J]. Nature, 2015, 518: 529- 533
doi: 10.1038/nature14236
[1] Yi-min XIA,Yu-hang LANG,Zhi-yong JI,Yong REN. Βearing performance of integrated cutter holder structure suitable for robot cutter change[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 392-403.
[2] Qi-peng SUN,Zhi-gang WU,Ning-bo CAO,Fei MA,Ting-zhu DU. Decision-making model of autonomous vehicle behavior based on risk prediction[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1761-1771.
[3] Jun LUO,Xu-dong SHAO,Jun-hui CAO,Wei FAN,Bi-da PEI. Orthogonal test and calculation method of cracking load of steel-ultra-high performance concrete composite specimen[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 909-920.
[4] Man GUO,Zhen-yu MEI,Li-hui ZHANG. Trajectory optimization of connected and autonomous vehicles to achieve tandem intersection control[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 275-282.
[5] FU Xiao-yun, LEI Lei, YANG Gang, LI Bao-ren. Wing parameter configuration and steady motion analysis of water-jet hybrid glider[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1499-1508.
[6] QU Zhao-wei, LUO Rui-qi, CHEN Yong-heng, CAO Ning-bo, DENG Xiao-lei, WANG Kun-wei. Characteristics of right-turning vehicle trajectories at signalized intersection[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(2): 341-351.
[7] QU Zhao-wei, CAO Ning-bo, CHEN Yong-heng, BAI Qiao-wen, KANG Meng, CHEN Ming-tao. Leading pedestrian intervals modeling at signalized intersections[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 538-544.
[8] XIE Lu xin, HU Jin bing, WU Jian feng, WANG Jun. Virtual experimental research on tail-breaking mechanism of whole-stalk sugarcane harvester[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1662-1670.
[9] PEI Xiao peng,WANG Guo lin,ZhOU Hai chao,ZhAO Fan. Influence of tread design parameters on tire vibration noise[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 871-878.