Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (6): 1120-1127    DOI: 10.3785/j.issn.1008-973X.2023.06.007
    
Daily water supply prediction method based on integrated learning and deep learning
Xin-lei ZHOU1(),Hai-ting GU1,Jing LIU1,Yue-ping XU1,*(),Fang GENG2,Chong WANG2
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Zhejiang Hydrology New Technology Development Company, Hangzhou 310009, China
Download: HTML     PDF(1780KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Making use of the historical daily water supply data of four water plants in Yiwu city, a new water supply prediction model based on long short term memory (LSTM) neural network improved by integrated learning algorithm was proposed, in order to effectively resolve the problems of low accuracy and insufficient generalization ability of the daily water supply prediction. In the model, a historical daily water supply after pre-processing by Pauta criterion was taken as the data input, the LSTM neural network with long-term temporal information memory was applied as the weak predictor of integrated learning, the grid search method was utilized for network hyperparameter tuning, and the AdaBoost integrated learning algorithm was used to weight the combination of the weak predictors to obtain the strong predictor. Results show that the improved LSTM neural network based on integrated learning algorithm has the highest Nash efficiency coefficient (NSE) with the lowest root mean square error (RMSE) and mean absolute error (MAE), the best fitting effect on the change trend and the peak value of daily water supply data, compared with the random forest (RF), AdaBoost and LSTM neural network. The time series prediction accuracy of the improved LSTM water supply forecasting model is significantly improved, with good generalization ability and stable prediction performance. The results can provide an important reference for the rational allocation of urban water resources planning and integrated intelligent water supply scheduling.



Key wordswater supply prediction      integrated learning      deep learning      combinatorial model      long short term memory (LSTM) neural network     
Received: 23 June 2022      Published: 30 June 2023
CLC:  TV 213  
Fund:  浙江省自然科学基金资助项目(LZ20E090001);国家重点研发项目(2019YFC0408800)
Corresponding Authors: Yue-ping XU     E-mail: 0922449@zju.edu.cn;yuepingxu@zju.edu.cn
Cite this article:

Xin-lei ZHOU,Hai-ting GU,Jing LIU,Yue-ping XU,Fang GENG,Chong WANG. Daily water supply prediction method based on integrated learning and deep learning. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1120-1127.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.06.007     OR     https://www.zjujournals.com/eng/Y2023/V57/I6/1120


基于集成学习与深度学习的日供水量预测方法

为了有效改善日供水量预测精度低、泛化能力不足的问题,以义乌市4个水厂的历史日供水数据为基础,提出基于集成学习算法改进的长短时记忆(LSTM)神经网络的供水预测方法. 该方法以拉依达准则预处理后的历史日供水量作为数据输入,将具备长期时序信息记忆能力的LSTM神经网络作为集成学习的弱预测器,使用网格搜索法进行网络超参数调优,使用AdaBoost集成学习算法对弱预测器进行加权组合得到强预测器. 结果表明:与随机森林、AdaBoost与LSTM神经网络相比,基于集成学习算法改进的LSTM神经网络有最高的纳什效率系数(NSE)、最低的均方根误差(RMSE)与平均绝对误差(MAE),对日供水数据的变化趋势与峰值的拟合效果最好;改进LSTM供水预测方法的时序预测精度得到极大提升,有较好的泛化能力、稳定的预测性能,能够为城市水资源合理配置、一体化智能供水调度提供重要参考.


关键词: 供水量预测,  集成学习,  深度学习,  组合模型,  长短时记忆(LSTM)神经网络 
Fig.1 Four water plants in Yiwu city
Fig.2 Autocorrelation coefficients of daily water supply series with different delay periods
Td/d NSE MAE/(m3·d?1) RMSE/(m3·d?1)
2 0.919 1 136 1 601
3 0.917 1 146 1 616
4 0.924 1 242 1 548
5 0.918 1 154 1 607
6 0.924 1 241 1 550
7 0.927 1 104 1 520
8 0.921 1 233 1 581
9 0.921 1 168 1 581
10 0.919 1 207 1 605
Tab.1 Performance comparison of LSTM neural network models with different input days
NRF NSE MAE/( m3·d?1) RMSE/( m3·d?1)
10 0.937 864 1 408
20 0.938 879 1 405
30 0.938 830 1 395
40 0.937 848 1 416
50 0.938 861 1 402
60 0.941 841 1 367
70 0.944 819 1 335
80 0.938 873 1 402
90 0.939 853 1 389
100 0.939 837 1 390
Tab.2 Performance comparison of random forest models with different number of decision trees
DRF NSE MAE/( m3·d?1) RMSE/( m3·d?1)
2 0.872 1 382 2 009
3 0.933 874 1 455
4 0.939 853 1 390
5 0.932 915 1 469
6 0.923 928 1 559
7 0.921 971 1 577
8 0.896 1 134 1 816
9 0.881 1 193 1 937
10 0.860 1 317 2 107
11 0.824 1 471 2 363
Tab.3 Performance comparison of random forest models with different decision tree depths
NAB NSE MAE/( m3·d?1) RMSE/( m3·d?1)
10 0.846 1 432 2 207
20 0.793 1 701 2 560
30 0.860 1 404 2 102
40 0.802 1 796 2 503
50 0.783 1 783 2 620
60 0.844 1 406 2 224
70 0.822 1 659 2 375
80 0.822 1 782 2 373
90 0.829 1 571 2 324
100 0.814 1 534 2 424
Tab.4 Performance comparison of AdaBoost models with different number of decision trees
NBS NSE MAE/( m3·d?1) RMSE/( m3·d?1)
16 0.924 1 115 1 548
32 0.927 1 335 1 646
64 0.917 1 170 1 617
128 0.896 1 376 1 811
256 0.761 1 980 2 752
Tab.5 Performance comparison of improved LSTM models with different batch sizes
N NSE
第1次 第2次 第3次 第4次 第5次 平均值
2 0.897 0.898 0.894 0.883 0.896 0.894
3 0.852 0.853 0.849 0.839 0.851 0.849
4 0.839 0.842 0.835 0.829 0.840 0.837
5 0.831 0.836 0.831 0.824 0.836 0.832
6 0.830 0.833 0.830 0.822 0.833 0.830
7 0.830 0.832 0.828 0.822 0.830 0.828
8 0.796 0.824 0.815 0.826 0.793 0.811
9 0.772 0.827 0.786 0.810 0.793 0.798
10 0.775 0.810 0.790 0.811 0.779 0.793
Tab.6 Performance comparison of improved LSTM models with different number of weak predictors
Fig.3 Curves of daily water supply prediction results for different water supply forecasting models at four water plants
方法 赤岸水厂 大陈水厂 佛堂水厂 中心水厂
NSE MAE/
(m3·d?1)
RMSE/
(m3·d?1)
NSE MAE/
(m3·d?1)
RMSE/
(m3·d?1)
NSE MAE/
(m3·d?1)
RMSE/
(m3·d?1)
NSE MAE/
(m3·d?1)
RMSE/
(m3·d?1)
RF 0.852 171.5 239.1 0.943 499.5 674.0 0.897 1 205.1 1 812.2 0.894 1 122.7 1 827.5
AdaBoost 0.844 187.8 245.2 0.892 791.9 929.8 0.816 1 587.6 2 420.7 0.836 1 611.3 2 275.0
LSTM 0.900 158.3 196.1 0.961 475.9 557.7 0.913 1 190.0 1 662.0 0.905 1 258.9 1 733.6
改进LSTM 0.929 118.4 165.2 0.971 402.2 484.8 0.925 1 131.8 1 545.2 0.924 1 113.9 1 547.2
Tab.7 Performance comparison of different water supply forecasting models for four water plants
[1]   李原园, 曹建廷, 黄火键, 等 国际上水资源综合管理进展[J]. 水科学进展, 2018, 29 (1): 127- 137
LI Yuan-yuan, CAO Jian-ting, HUANG Huo-jian, et al International progress in integrated water resources management[J]. Advances in Water Science, 2018, 29 (1): 127- 137
[2]   姜彤, 孙赫敏, 李修仓, 等 气候变化对水文循环的影响[J]. 气象, 2020, 46 (3): 289- 300
JIANG Tong, SUN He-min, LI Xiu-cang, et al Impacts of climate change on water cycle[J]. Meteorological Monthly, 2020, 46 (3): 289- 300
[3]   张建云, 王国庆, 金君良, 等 1956—2018 年中国江河径流演变及其变化特征[J]. 水科学进展, 2020, 31 (2): 153- 161
ZHANG Jian-yun, WANG Guo-qing, JIN Jun-liang, et al Evolution and variation characteristics of the recorded runoff for the major rivers in China during 1956-2018[J]. Advances in Water Science, 2020, 31 (2): 153- 161
[4]   PACCHIN E, GAGLIARDI F, ALVISI S, et al A comparison of short-term water demand forecasting models[J]. Water Resources Management, 2019, 33: 1481- 1497
doi: 10.1007/s11269-019-02213-y
[5]   BRENTAN B M, LUVIZOTTO E, HERRERA M, et al Hybrid regression model for near real-time urban water demand forecasting[J]. Journal of Computational and Applied Mathematics, 2017, 309: 532- 541
doi: 10.1016/j.cam.2016.02.009
[6]   NARAYANAN L K, SANKARANARAYANAN S, RODRIGUES J J P C, et al Water demand forecasting using deep learning in IoT enabled water distribution network[J]. International Journal of Computers Communications and Control, 2020, 15 (6): 3977
[7]   SHUANG Q, ZHAO R T Water demand prediction using machine learning methods: a case study of the Beijing–Tianjin–Hebei region in China[J]. Water, 2021, 13 (3): 310
doi: 10.3390/w13030310
[8]   GUO G, LIU S, WU Y, et al Short-term water demand forecast based on deep learning method[J]. Journal of Water Resources Planning and Management, 2018, 144 (12): 04018076
doi: 10.1061/(ASCE)WR.1943-5452.0000992
[9]   XENOCHRISTOU M, HUTTON C, HOFMAN J, et al Short-term forecasting of household water demand in the UK using an interpretable machine learning approach[J]. Journal of Water Resources Planning and Management, 2021, 147 (4): 04021004
doi: 10.1061/(ASCE)WR.1943-5452.0001325
[10]   HUANG H, ZHANG Z, SONG F An ensemble-learning-based method for short-term water demand forecasting[J]. Water Resources Management, 2021, 35 (6): 1757- 1773
doi: 10.1007/s11269-021-02808-4
[11]   王忠红, 温进化 义乌市水资源开发利用对策研究[J]. 浙江水利科技, 2016, 44 (4): 23- 25
WANG Zhong-hong, WEN Jin-hua Research on countermeasures for water resources development and utilization in Yiwu City[J]. Zhejiang Hydrotechnics, 2016, 44 (4): 23- 25
[12]   浙江省水利厅. 2021年浙江省水资源公报[EB/OL]. (2022-08-01) [2022-08-20]. http://slt.zj.gov.cn/art/2022/8/1/art_1229243017_4960161.html.
[13]   中华人民共和国水利部. 2021 年中国水资源公报[EB/OL]. (2022-06-15) [2022-08-20]. http://www.mwr.gov.cn/sj/tjgb/szygb/202206/t20220615_1579315.html.
[14]   鲍倩倩, 谢磊, 周杨军, 等 水资源紧缺约束下义乌市人口承载力研究[J]. 水利规划与设计, 2020, (9): 47- 51
BAO Qian-qian, XIE Lei, ZHOU Yang-jun, et al Study on the population carrying capacity of Yiwu City under water scarcity constraint[J]. Water Resources Planning and Design, 2020, (9): 47- 51
[15]   BREIMAN L Bagging predictors[J]. Machine Learning, 1996, 24: 123- 140
[16]   HO T K The random subspace method for constructing decision forests[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20 (8): 832- 844
doi: 10.1109/34.709601
[17]   FREUND Y Boosting a weak learning algorithm by majority[J]. Information and Computation, 1995, 121 (2): 256- 285
[18]   郭冠呈, 刘书明, 李俊禹, 等 基于双向长短时神经网络的水量预测方法研究[J]. 给水排水, 2018, 44 (3): 123- 126
GUO Guan-cheng, LIU Shu-ming, LI Jun-yu, et al Study on water quantity prediction method based on bidirectional long and short time neural network[J]. Water and Wastewater Engineering, 2018, 44 (3): 123- 126
[19]   KAO I F, ZHOU Y, CHANG L C, et al Exploring a long short-term memory based encoder-decoder framework for multi-step-ahead flood forecasting[J]. Journal of Hydrology, 2020, 583: 124631
doi: 10.1016/j.jhydrol.2020.124631
[20]   NI L, WANG D, SINGH V P, et al Streamflow and rainfall forecasting by two long short-term memory-based models[J]. Journal of Hydrology, 2020, 583: 124296
doi: 10.1016/j.jhydrol.2019.124296
[21]   DU B, ZHOU Q, GUO J, et al Deep learning with long short-term memory neural networks combining wavelet transform and principal component analysis for daily urban water demand forecasting[J]. Expert Systems with Applications, 2021, 171: 114571
doi: 10.1016/j.eswa.2021.114571
[1] Pei-feng LIU,Lu QIAN,Xing-wei ZHAO,Bo TAO. Continual learning framework of named entity recognition in aviation assembly domain[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1186-1194.
[2] Jia-chi ZHAO,Tian-qi WANG,Li-fang ZENG,Xue-ming SHAO. Rapid prediction of unsteady aerodynamic characteristics of flapping wing based on GRU[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1251-1256.
[3] Xiao-lu CAO,Fu-nan LU,Xiang ZHU,Li-bo WENG,Shu-fang LU,Fei GAO. Sketch-based compatible clothing image generation[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 939-947.
[4] Yu-ting SU,Rong-xuan LU,Wei ZHANG. Vehicle re-identification algorithm based on attention mechanism and adaptive weight[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 712-718.
[5] Qing-lu MA,Jia-ping LU,Xiao-yao TANG,Xue-feng DUAN. Improved YOLOv5s flame and smoke detection method in road tunnels[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 784-794.
[6] Yao ZENG,Fa-qin GAO. Surface defect detection algorithm of electronic components based on improved YOLOv5[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 455-465.
[7] Huan LAN,Jian-bo YU. Steel surface defect detection based on deep learning 3D reconstruction[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 466-476.
[8] Ju-xiang ZENG,Ping-hui WANG,Yi-dong DING,Lin LAN,Lin-xi CAI,Xiao-hong GUAN. Graph neural network based node embedding enhancement model for node classification[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 219-225.
[9] Jian-sha LU,Qin BAO,Hong-tao TANG,Yi-ping SHAO,Wen-bin ZHAO. Optimal tag selection method for device-free human tracking system[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 415-425.
[10] Jun-chi MA,Xiao-xin DI,Zong-tao DUAN,Lei TANG. Survey on program representation learning[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 155-169.
[11] Chen YE,Hong-fei ZHAN,Ying-jun LIN,Jun-he YU,Rui WANG,Wu-chang ZHONG. Design knowledge recommendation based on inference-context-aware activation model[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 32-46.
[12] Jin-zhen LIU,Fei CHEN,Hui XIONG. Open electrical impedance imaging algorithm based on multi-scale residual network model[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1789-1795.
[13] Wan-liang WANG,Tie-jun WANG,Jia-cheng CHEN,Wen-bo YOU. Medical image segmentation method combining multi-scale and multi-head attention[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1796-1805.
[14] Kun HAO,Kuo WANG,Bei-bei WANG. Lightweight underwater biological detection algorithm based on improved Mobilenet-YOLOv3[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1622-1632.
[15] Yong-sheng ZHAO,Rui-xiang LI,Na-na NIU,Zhi-yong ZHAO. Shape control method of fuselage driven by digital twin[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1457-1463.