|
|
Steel surface defect detection based on deep learning 3D reconstruction |
Huan LAN1(),Jian-bo YU1,2,*() |
1. School of Mechanical Engineering, Tongji University, Shanghai 201804, China 2. Shanghai Collaborative Innovation Center of Intelligent Manufacturing Robot Technology for Large Components, Shanghai 201620, China |
|
|
Abstract A new 3D reconstruction network was proposed in order to resolve the difficulty of 2D detection method to detect defects with depth information. CasMVSNet with multiscale feature enhancement (MFE-CasMVSNet) was combined with the technology of point cloud processing for steel plate surface defect detection. In order to improve the accuracy of 3D reconstruction, a position-oriented feature enhancement module (PFEM) and a multiscale feature adaptive fusion module (MFAFM) were proposed to effectively extract features and reduce information loss. A density clustering method, curvature-sparse-guided density-based spatial clustering of applications with noise (CS-DBSCAN), was proposed for accurately extracting defects in different parts, and the 3D detection box was introduced to locate and visualize defects. Experimental results show that compared with the reconstruction method based on images, MFE-CasMVSNet can realize the 3D reconstruction of steel plate surface more accurately and quickly. Compared with 2D detection, 3D visual defect detection can accurately obtain the 3D shape information of defects and realize the multi-dimensional detection of steel plate surface defects.
|
Received: 27 March 2022
Published: 31 March 2023
|
|
Fund: 国家自然科学基金资助项目 (92167107,71777173);中央高校基本业务经费资助项目 |
Corresponding Authors:
Jian-bo YU
E-mail: 13120521883@163.com;jbyu@tongji.edu.cn
|
基于深度学习三维成型的钢板表面缺陷检测
为了解决二维检测方法难以检测带有深度信息的缺陷问题,提出全新的三维重建网络. 提出基于多尺度特征增强的级联式三维重建网络(MFE-CasMVSNet),并与点云数据处理技术结合,用于钢板表面缺陷检测. 为了提高三维重建的精度,提出位置导向的特征增强模块(PFEM)和多尺度特征自适应融合模块(MFAFM),对特征进行有效提取并减少信息丢失. 提出基于曲率稀疏化的密度聚类方法(CS-DBSCAN),用于精确识别不同部位的缺陷. 引入三维检测框,实现对缺陷的定位与检测可视化. 实验结果表明,相较于图像几何的重建方法,MFE-CasMVSNet能够更加精确、快速地实现钢板表面的三维重建. 相较于二维检测,三维缺陷检测能够精确获取缺陷的三维形状信息,实现对钢板表面缺陷的多维度检测.
关键词:
表面缺陷检测,
深度学习,
三维重建,
点云分割,
缺陷定位
|
|
[1] |
程训, 余建波 基于机器视觉的加工刀具磨损监测方法[J]. 浙江大学学报: 工学版, 2021, 55 (5): 896- 904 CHEN Xun, YU Jian-bo Monitoring method for machining tool wear based on machine vision[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (5): 896- 904
|
|
|
[2] |
CHU M F, GONG R F, GAO S, et al Steel surface defects recognition based on multi-type statistical features and enhanced twin support vector machine[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 171: 140- 150
doi: 10.1016/j.chemolab.2017.10.020
|
|
|
[3] |
王典洪, 甘胜丰, 张伟民, 等 基于监督双限制连接 Isomap算法的带钢表面缺陷图像分类方法[J]. 自动化学报, 2014, 40 (5): 883- 891 WANG Dian-hong, GAN Sheng-feng, ZHANG Wei-min, et al Strip surface defect image classification based on double-limited and supervised-connect Isomap algorithm[J]. Acta Automatica Sinica, 2014, 40 (5): 883- 891
|
|
|
[4] |
WANG H Y, ZHANG J W, TIAN Y, et al A Simple guidance template-based defect detection method for strip steel surfaces[J]. IEEE Transactions on Industrial Informatics, 2019, 15 (5): 2798- 2809
doi: 10.1109/TII.2018.2887145
|
|
|
[5] |
KOYUNCU I, ÇETIN O, KATIRCIOĞLU F, et al. Edge dedection application with FPGA based Sobel operator [C]// Signal Processing and Communications Applications Conference. Malatya: IEEE, 2015: 1829–1832.
|
|
|
[6] |
HE Y, SONG K C, MENG Q G, et al An end-to-end steel surface defect detection approach via fusing multiple hierarchical features[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (4): 1493- 1504
doi: 10.1109/TIM.2019.2915404
|
|
|
[7] |
LIU Y, XU K, XU J W Periodic surface defect detection in steel plates based on deep learning[J]. Applied Sciences-Basel, 2019, 9 (15): 3127
doi: 10.3390/app9153127
|
|
|
[8] |
金侠挺, 王耀南, 张辉, 等 基于贝叶斯 CNN和注意力网络的钢轨表面缺陷检测系统[J]. 自动化学报, 2019, 45 (12): 2312- 2327 JIN Xia-ting, WANG Yao-nan, ZHANG Hui DeepRail: automatic visual detection system for railway surface defect using Bayesian CNN and attention network[J]. Acta Automatica Sinica, 2019, 45 (12): 2312- 2327
|
|
|
[9] |
LIU J Q, ZHANG Z J, LIN Z Y, et al Characterization method of surface crack based on laser thermography[J]. IEEE Access, 2021, 9: 76395- 76402
doi: 10.1109/ACCESS.2021.3081435
|
|
|
[10] |
GUNATILAKE A, PIYATHILAKA L, TRAN A, et al Stereo vision combined with laser profiling for mapping of pipeline internal defects[J]. IEEE Sensors Journal, 2021, 21 (10): 11926- 11934
doi: 10.1109/JSEN.2020.3040396
|
|
|
[11] |
孙彬, 王建华, 赫东锋, 等 基于激光测量的航发叶片表面几何缺陷识别技术[J]. 自动化学报, 2020, 46 (3): 594- 599 SUN Bin, WANG Jian-hua, HE Dong-feng, et al Identification of aero-engine blade surface geometric defects with laser measurement[J]. Acta Automatica Sinica, 2020, 46 (3): 594- 599
|
|
|
[12] |
ZHAO C, ZHU H, WANG X. Steel plate surface defect recognition method based on depth information [C]// Data Driven Control and Learning Systems Conference. Dali: IEEE, 2019: 322-327.
|
|
|
[13] |
EIGEN D, PUHRSCH C, FERGUS R. Depth map prediction from a single image using a multi-scale deep network [C]// Conference on Neural Information Processing Systems. Montreal: [s. n.], 2014: 2366-2374.
|
|
|
[14] |
YAO Y, LUO Z, LI S, et al. MVSNet: depth inference for unstructured multi-view stereo [C]// European Conference on Computer Vision. Munich: Springer, 2018: 785-801.
|
|
|
[15] |
IM S, JEON H G, LIN S, et al. DPSNet: end-to-end deep plane sweep stereo [EB/OL]. [2022-03-04]. https://arxiv.org/pdf/1905.00538.pdf.
|
|
|
[16] |
YU Z, GAO S. Fast-MVSNet: sparse-to-dense multi-view stereo with learned propagation and gauss-newton refinement [C]// Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1949-1958.
|
|
|
[17] |
CHEN R, HAN S, XU J, et al. Point-based multi-view stereo network [C]// International Conference on Computer Vision. Seoul: IEEE, 2019: 1538-1547.
|
|
|
[18] |
GU X, FAN Z, ZHU S, et al. Cascade cost volume for high-resolution multi-view stereo and stereo matching [C]// Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 2492-2501.
|
|
|
[19] |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2117-2125.
|
|
|
[20] |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design [C]// Conference on Computer Vision and Pattern Recognition. Nashille: IEEE, 2021: 13708-13717.
|
|
|
[21] |
HU J, SHEN L, SUN G, et al Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (8): 2011- 2023
doi: 10.1109/TPAMI.2019.2913372
|
|
|
[22] |
ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise [C]// International Conference on Knowledge Discovery and Data Mining. Portland: [s. n.], 1996: 226-231.
|
|
|
[23] |
GOOTTSCHALK S, LIN M C, MANOCHA D. OBBTree: a hierarchical structure for rapid interference detection [C]// Conference on Computer Graphics and Interactive Techniques. New Orleans: ACM, 1996, 30: 171-180.
|
|
|
[24] |
AANAES H, JENSEN R R, VOGIATZIS G, et al Large-scale data for multiple-view stereopsis[J]. International Journal of Computer Vision, 2016, 120 (2): 153- 168
doi: 10.1007/s11263-016-0902-9
|
|
|
[25] |
SCHONBERGER J L, FRAHM J M. Structure-from-motion revisited [C]// Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2016: 4104-4113.
|
|
|
[26] |
TOLA E, STRECHA C, FUA P Efficient large-scale multi-view stereo for ultra high-resolution image sets[J]. Machine Vision and Applications, 2012, 23: 903- 920
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|