Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (6): 1257-1266    DOI: 10.3785/j.issn.1008-973X.2023.06.022
    
Electrical resistance heating activated persulfate for remediation of perfluorooctanoic acid-contaminated soil
Liu-tao WU1(),Ming-xiu ZHAN1,2,Jian-ying FU3,Wen-tao JIAO2,Yong-ping SHAN2,Chen-chen ZHANG2,Xu XU1,*()
1. College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China
2. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
3. State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1926KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to effectively remove perfluorooctanoic acid (PFOA) from contaminated soil, electrical resistance heating (ERH) activated persulfate (PS) was used to study the heating law and PFOA removal effect of three different soils (loam, sandy soil and clay) during the ERH-PS coupled remediation process. Taking clay as the representative soil, the effect of amount of oxidant added, initial soil pH, and coexisting chloride ions on PFOA removal and the degradation mechanism of PFOA in soil were further studied. Results showed that when the voltage intensity was 3 V/cm, the time for the three soils to rise from 25 ℃ to 100 ℃ did not exceed 30 minutes. When the amount of PS added per kilogram of soil was 50 g, the heating temperature was 100 ℃, and after 6 h of degradation, the degradation efficiency of PFOA for the soils was as follows: clay (90.9%) > loam (72.7%) > sandy soil (48.8%). In the meanwhile, PS addition was an important condition to ensure the effective degradation of PFOA in soil. The acidic environment of soil was favorable to promote the degradation of PFOA, while the alkaline conditions and coexisting chloride ions would inhibit the degradation of PFOA. Through the detection and analysis of the degradation intermediates, it is inferred that the possible degradation mechanism of PFOA was the step-by-step degradation process of PFOA promoted by ${\mathrm{S}\mathrm{O}}_{4}^{ {\bullet} -}$ and ${^\bullet}\;{\rm{OH}}$ generated by PS activation.



Key wordsperfluorooctanoic acid (PFOA)      soil remediation      electrical resistance heating (ERH)      persulfate      degradation effect     
Received: 23 June 2022      Published: 30 June 2023
CLC:  X 53  
Fund:  国家自然科学基金资助项目(42077126)
Corresponding Authors: Xu XU     E-mail: 954436569@qq.com;xuxu@cjlu.edu.cn
Cite this article:

Liu-tao WU,Ming-xiu ZHAN,Jian-ying FU,Wen-tao JIAO,Yong-ping SHAN,Chen-chen ZHANG,Xu XU. Electrical resistance heating activated persulfate for remediation of perfluorooctanoic acid-contaminated soil. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1257-1266.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.06.022     OR     https://www.zjujournals.com/eng/Y2023/V57/I6/1257


电阻加热活化过硫酸盐修复全氟辛酸污染土壤

为了有效去除污染土壤中的全氟辛酸(PFOA),通过电阻加热(ERH)活化过硫酸盐(PS)的方法,研究3种土壤(壤土、砂土和黏土)在ERH-PS耦合修复过程中的升温规律和PFOA的去除效果. 以黏土为代表土壤,探究氧化剂添加量、土壤初始pH和共存氯离子对土壤中PFOA去除的影响以及PFOA的降解机制. 研究结果表明,当电压强度为3 V/cm时,3种土壤由25 ℃升至100 ℃的时间均不超过30 min. 每千克土壤添加50 g PS、加热温度为100 ℃,降解6 h后,3种土壤的PFOA降解效率由大到小依次为黏土(90.9%)>壤土(72.7%)>砂土(48.8%). PS的添加量是保证土壤中PFOA有效降解的重要条件,土壤的酸性环境有利于促进PFOA的降解,碱性条件和共存氯离子均会抑制PFOA的降解. 通过对降解中间产物的检测分析,进而推断PFOA可能的降解机理为PS活化生成的 ${\mathrm{S}\mathrm{O}}_{4}^ { {\bullet} -}$${^\bullet}\;{\rm{OH}} $促使的PFOA逐级降解过程.


关键词: 全氟辛酸(PFOA),  土壤修复,  电阻加热(ERH),  过硫酸盐,  降解效果 
土壤类型 wom/% pH R0/% s/(m2·g?1) c/(J·g?1·℃?1) Φ/%
d<0.002 mm 0.002 $ \leqslant {{d}} \leqslant $0.020 mm 0.020 $ < {{d}} \leqslant $2.000 mm
壤土 0.318 7.75 14.37 31.95 53.68 11.248 0.84 24.2
砂土 0.278 8.31 5.80 1.60 92.60 8.501 0.82 17.7
黏土 0.518 7.28 46.01 14.00 39.99 22.943 0.88 30.4
Tab.1 Basic properties of three test soils after air drying, grinding and screening
Fig.1 Schematic diagram of electrical resistance heating activated persulfate coupling repair experimental device
实验组 土壤类型 w(PFOA) /
10-9
X/g θ0/℃ t/h Y/g
A-1 壤土 500 50 100 6 0
A-2 黏土(pH=6.3) 500 50 100 6 0
A-3 砂土 500 50 100 6 0
B-1 黏土 500 0 100 6 0
B-2 黏土 500 12.5 100 6 0
B-3 黏土 500 100 100 6 0
C-1 黏土(pH=2.4) 500 50 100 6 0
C-2 黏土(pH=11.8) 500 50 100 6 0
D-1 黏土 500 50 100 6 10
D-2 黏土 500 50 100 6 30
D-3 黏土 500 50 100 6 50
E-1 黏土 500 100 100 1/6 0
E-2 黏土 500 100 100 0.5 0
E-3 黏土 500 100 100 1 0
E-4 黏土 500 100 100 2 0
E-5 黏土 500 100 100 3 0
Tab.2 Design of electrical resistance heating activated persulfate coupling repair experimental conditions
Fig.2 Temperature and current changes of different soils during coupled remediation process
Fig.3 Degradation effect of perfluorooctanoic acid and mass fraction of its degradation products in different soils
Fig.4 SEM photographs of different soils before and after remediation
Fig.5 Effect of PS addition on perfluorooctanoic acid degradation effect and mass fraction of degradation products in clay
Fig.6 Effect of soil initial pH on perfluorooctanoic acid degradation effect and mass fraction of degradation products in clay
Fig.7 Effect of chloride ion addition on perfluorooctanoic acid degradation effect and mass fraction of degradation products in clay
Fig.8 Changes of mass fraction of soil PFOA and its degradation products during coupled remediation
Fig.9 EPR spectra of soil after coupled remediation for 6 h
[1]   BRUTON T A, SEDLAK D L Treatment of aqueous film-forming foam by heat-activated persulfate under conditions representative of in situ chemical oxidation[J]. Environmental Science and Technology, 2017, 51 (23): 13878- 13885
doi: 10.1021/acs.est.7b03969
[2]   ZHAN J, ZHANG A, HÉROUX P, et al Remediation of perfluorooctanoic acid (PFOA) polluted soil using pulsed corona discharge plasma[J]. Journal of Hazardous Materials, 2020, 387: 121688
doi: 10.1016/j.jhazmat.2019.121688
[3]   SUJA F, PRAMANIK B K, ZAIN S M Contamination, bioaccumulation and toxic effects of perfluorinated chemicals (PFCs) in the water environment: a review paper[J]. Water Science and Technology, 2009, 60 (6): 1533- 1544
doi: 10.2166/wst.2009.504
[4]   李飞, 陈轶丹, 周真明, 等 全氟辛酸(PFOA)厌氧生物可降解性[J]. 环境科学, 2016, 37 (12): 4773- 4779
LI Fei, CHEN Yi-dan, ZHOU Zhen-ming, et al Anaerobic biodegradability of perfluorooctanoic acid (PFOA)[J]. Environmental Science, 2016, 37 (12): 4773- 4779
doi: 10.13227/j.hjkx.201603155
[5]   BRUSSEAU M L, ANDERSON R H, GUO B PFAS concentrations in soils: background levels versus contaminated sites[J]. Science of the Total Environment, 2020, 740: 140017
doi: 10.1016/j.scitotenv.2020.140017
[6]   LUO Q, LIANG S, HUANG Q Laccase induced degradation of perfluorooctanoic acid in a soil slurry[J]. Journal of Hazardous Materials, 2018, 359: 241- 247
doi: 10.1016/j.jhazmat.2018.07.048
[7]   FALCIGLIA P P, VAGLIASINDI F G A Remediation of hydrocarbon polluted soils using 2.45 GHz frequency-heating: Influence of operating power and soil texture on soil temperature profiles and contaminant removal kinetics[J]. Journal of Geochemical Exploration, 2015, 151: 66- 73
doi: 10.1016/j.gexplo.2015.01.007
[8]   GIRI R R, OZAKI H, MORIGAKI T, et al UV photolysis of perfluorooctanoic acid (PFOA) in dilute aqueous solution[J]. Water Science and Technology, 2011, 63 (2): 276- 282
doi: 10.2166/wst.2011.050
[9]   FLORES C, VENTURA F, MARTIN-ALONSO J, et al Occurrence of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in N. E. Spanish surface waters and their removal in a drinking water treatment plant that combines conventional and advanced treatments in parallel lines[J]. Science of the Total Environment, 2013, 461-462: 618- 626
doi: 10.1016/j.scitotenv.2013.05.026
[10]   TROJANOWICZ M, BOJANOWSKA-CZAJKA A, BARTOSIEWICZ I, et al Advanced oxidation/reduction processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS): a review of recent advances[J]. Chemical Engineering Journal, 2018, 336: 170- 199
doi: 10.1016/j.cej.2017.10.153
[11]   BRUTON T A, SEDLAK D L Treatment of perfluoroalkyl acids by heat-activated persulfate under conditions representative of in situ chemical oxidation[J]. Chemosphere, 2018, 206: 457- 464
doi: 10.1016/j.chemosphere.2018.04.128
[12]   LEE Y, LO S, KUO J, et al Decomposition of perfluorooctanoic acid by microwaveactivated persulfate: effects of temperature, pH, and chloride ions[J]. Frontiers of Environmental Science and Engineering, 2012, 6: 17- 25
doi: 10.1007/s11783-011-0371-x
[13]   LEE Y C, LO S L, CHIUEH P T, et al Microwave-hydrothermal decomposition of perfluorooctanoic acid in water by iron-activated persulfate oxidation[J]. Water Research, 2010, 44 (3): 886- 892
doi: 10.1016/j.watres.2009.09.055
[14]   QIAN Y, GUO X, ZHANG Y, et al Perfluorooctanoic acid degradation using UV-persulfate process: modeling of the degradation and chlorate formation[J]. Environmental Science and Technology, 2016, 50 (2): 772- 781
doi: 10.1021/acs.est.5b03715
[15]   SÖRENGÅRD M, NIARCHOS G, JENSEN P E, et al Electrodialytic per- and polyfluoroalkyl substances (PFASs) removal mechanism for contaminated soil[J]. Chemosphere, 2019, 232: 224- 231
doi: 10.1016/j.chemosphere.2019.05.088
[16]   SÖRENGÅRD M, KLEJA D B, AHRENS L Stabilization and solidification remediation of soil contaminated with poly- and perfluoroalkyl substances (PFASs)[J]. Journal of Hazardous Materials, 2019, 367: 639- 646
doi: 10.1016/j.jhazmat.2019.01.005
[17]   BAO Y, DENG S, JIANG X, et al Degradation of PFOA substitute: GenX (HFPO-DA ammonium salt): oxidation with UV/persulfate or reduction with UV/sulfite?[J]. Environmental Science and Technology, 2018, 52 (20): 11728- 11734
[18]   TURNER L P, KUEPER B H, JAANSALU K M, et al Mechanochemical remediation of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) amended sand and aqueous film-forming foam (AFFF) impacted soil by planetary ball milling[J]. Science of the Total Environment, 2021, 765: 142722
doi: 10.1016/j.scitotenv.2020.142722
[19]   WANG N, LV H, ZHOU Y, et al Complete defluorination and mineralization of perfluorooctanoic acid by mechanochemical method using alumina and persulfate[J]. Environmental Science and Technology, 2019, 53 (14): 8302- 8313
doi: 10.1021/acs.est.9b00486
[20]   LEI Y J, TIAN Y, SOBHANI Z, et al Synergistic degradation of PFAS in water and soil by dual-frequency ultrasonic activated persulfate[J]. Chemical Engineering Journal, 2020, 388: 124215
doi: 10.1016/j.cej.2020.124215
[21]   HAN Z, JIAO W, TIAN Y, et al Lab-scale removal of PAHs in contaminated soil using electrical resistance heating: removal efficiency and alteration of soil properties[J]. Chemosphere, 2020, 239: 124496
doi: 10.1016/j.chemosphere.2019.124496
[22]   COSTANZA J, MARCET T, CÁPIRO N L, et al Tetrachloroethene release and degradation during combined ERH and sodium persulfate oxidation[J]. Groundwater Monitoring and Remediation, 2017, 37 (4): 43- 50
doi: 10.1111/gwmr.12251
[23]   HAN Z, LI S, YUE Y, et al Enhancing remediation of PAH-contaminated soil through coupling electrical resistance heating using Na2S2O8[J]. Environmental Research, 2021, 198: 110457
doi: 10.1016/j.envres.2020.110457
[24]   CHOWDHURY A I A, GERHARD J I, REYNOLDS D, et al Low permeability zone remediation via oxidant delivered by electrokinetics and activated by electrical resistance heating: proof of concept[J]. Environmental Science and Technology, 2017, 51 (22): 13295- 13303
doi: 10.1021/acs.est.7b02231
[25]   ZAREITALABAD P, SIEMENS J, HAMER M, et al Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater: a review on concentrations and distribution coefficients[J]. Chemosphere, 2013, 91 (6): 725- 732
doi: 10.1016/j.chemosphere.2013.02.024
[26]   袁娜娜 室内环刀法测定土壤田间持水量[J]. 中国新技术新产品, 2014, 9: 184
YUAN Na-na Determination of soil field water capacity by indoor ring knife method[J]. New Technology and New Products of China, 2014, 9: 184
doi: 10.3969/j.issn.1673-9957.2014.16.148
[27]   FANG G, CHEN X, WU W, et al Mechanisms of interaction between persulfate and soil constituents: activation, free radical formation, conversion, and identification[J]. Environmental Science and Technology, 2018, 52 (24): 14352- 14361
doi: 10.1021/acs.est.8b04766
[28]   FRIIS A K, HERON G, ALBRECHTSEN H J, et al Anaerobic dechlorination and redox activities after full-scale Electrical Resistance Heating (ERH) of a TCE-contaminated aquifer[J]. Journal of Contaminant Hydrology, 2006, 88 (3/4): 219- 234
[29]   张凤君, 刘哲华, 苏小四, 等 土壤类型及组分对热活化过硫酸盐氧化降解土壤中挥发性氯代烃的影响[J]. 吉林大学学报: 地球科学版, 2018, 48 (4): 1212- 1220
ZHANG Feng-jun, LIU Zhe-hua, SU Xiao-si, et al Effects of soil types and composition on oxidative degradation of volatile chlorinated hydrocarbons by thermally activated persulfate[J]. Journal of Jilin University: Earth Science Edition, 2018, 48 (4): 1212- 1220
[30]   郭丽, 袁颐进, 冯丽贞, 等 电活化过硫酸盐降解全氟辛酸及其中间产物的探究分析[J]. 环境科学学报, 2020, 40 (6): 2045- 2054
GUO Li, YUAN Yi-jin, FENG Li-zhen, et al Electrochemical activated persulfate to degrade perfluorooctanoic acid and the analysis of intermediate products[J]. Acta Scientiae Circumstantiae, 2020, 40 (6): 2045- 2054
[31]   LIU C S, HIGGINS C P, WANG F, et al Effect of temperature on oxidative transformation of perfluorooctanoic acid (PFOA) by persulfate activation in water[J]. Separation and Purification Technology, 2012, 91: 46- 51
doi: 10.1016/j.seppur.2011.09.047
[32]   KO S, CRIMI M, MARVIN B K, et al Comparative study on oxidative treatments of NAPL containing chlorinated ethanes and ethenes using hydrogen peroxide and persulfate in soils[J]. Journal of Environmental Management, 2012, 108: 42- 48
doi: 10.1016/j.jenvman.2012.04.034
[33]   PARK S, LEE L S, MEDINA V F, et al Heat-activated persulfate oxidation of PFOA, 6: 2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation[J]. Chemosphere, 2016, 145: 376- 383
doi: 10.1016/j.chemosphere.2015.11.097
[34]   LIU G, LI C, STEWART B A, et al Enhanced thermal activation of peroxymonosulfate by activated carbon for efficient removal of perfluorooctanoic acid[J]. Chemical Engineering Journal, 2020, 399: 125722
doi: 10.1016/j.cej.2020.125722
[35]   CAI S, HU X, LU D, et al Ferrous-activated persulfate oxidation of triclosan in soil and groundwater: the roles of natural mineral and organic matter[J]. Science of the Total Environment, 2021, 762: 143092
doi: 10.1016/j.scitotenv.2020.143092
[1] Qian CHEN,Wu CAI,Jie CHEN,Hu-biao ZHAO,Chang-xin LI,Yun-feng HE. Degradation effects of different chemical oxidants on polycyclic aromatic hydrocarbons in soil[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2437-2444.