Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (9): 1756-1765    DOI: 10.3785/j.issn.1008-973X.2023.09.007
    
Post-processing of numerical precipitation forecast based on spatial-temporal deep learning model
Chao-hao ZHENG1(),Zhi-wei YIN2,Gang-feng ZENG3,Yue-ping XU1,Peng ZHOU1,Li LIU1,*()
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Taizhou Water Resources Bureau, Taizhou 318000, China
3. Taizhou Water Resources & Hydropower Survey Designing Institute, Taizhou 318000, China
Download: HTML     PDF(2179KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to improve the accuracy and resolution of precipitation forecasts, taking Jiaojiang river basin in Zhejiang province as a case study, a precipitation post-processing model with the deep learning (CNN-LSTM) was proposed by using CMA-CMORPH precipitation grid dataset and ECMWF numerical precipitation predictions. The accuracy of precipitation forecast before and after the post-processing for different lead times were explored and the ability of precipitation forecasts to predict typical rainstorm events was evaluated. Results showed that CNN-LSTM can significantly improve the accuracy of the raw precipitation forecasts, the root mean square error decreasing from 6.0 mm to 3.0 mm, and the coefficient correlation was improved from 0.6 to 0.9. After the post-processing of two typhoon events, the precipitation forecast error of 6-hour accumulated areal rainfall forecasts after post-processing in Jiaojiang river basin were confined within 10%. The TS score during rainy season after post-treatment was generally near 0.90. The TS score of light rain was increased from less than 0.80 to 0.91, and the TS score of moderate rain increased from less than 0.50 to 0.60.



Key wordsECMWF      spatio-temporal post-processing mode      deep learning      precipitation forecast     
Received: 14 November 2022      Published: 16 October 2023
CLC:  TV 125  
Fund:  公共安全科技关键技术、装备研发及应用示范-基于大数据和人工智能的流域性洪水灾害预防预警关键技术和应用示范(2021C03017);浙江省自然科学基金“基于智能化参数分区和定量降水预报的椒江流域集合洪水预报研究”(LQ22E090004);基于多源信息和深度学习的台风暴雨洪水分布式预报预警研究(2023M733117)
Corresponding Authors: Li LIU     E-mail: 22012252@zju.edu.cn;li_liu@zju.edu.cn
Cite this article:

Chao-hao ZHENG,Zhi-wei YIN,Gang-feng ZENG,Yue-ping XU,Peng ZHOU,Li LIU. Post-processing of numerical precipitation forecast based on spatial-temporal deep learning model. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1756-1765.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.09.007     OR     https://www.zjujournals.com/eng/Y2023/V57/I9/1756


基于时空深度学习模型的数值降水预报后处理

为了提高降水预报的精度和分辨率,以浙江省椒江流域为研究对象,使用CMA-CMORPH降水网格数据集和ECMWF数值降水预报产品,提出基于深度学习的降水后处理模型CNN-LSTM. 探讨在不同预报时效的后处理前后降水预报的精度变化,评估降水预报对典型暴雨事件的预报能力. 结果表明:CNN-LSTM能够显著提升原始降水预报的精度,均方根误差从6.0 mm下降为3.0 mm,相关系数从0.6上升至0.9. 2起台风事件后处理的降水预报在椒江流域逐6 h面雨量误差均不超过10%. 经过雨季后处理的TS评分集中于0.90;并且在各降水等级表现均好于后处理前,小雨TS评分从不足0.80提升至0.91,中雨的TS评分从不足0.50提升至0.60.


关键词: ECMWF,  时空后处理模型,  深度学习,  降水预报 
Fig.1 Schematic diagram of basin distribution, water system and precipitation grid data in Jiaojiang river basin
Fig.2 Model structure of CNN-LSTM
降水等级 24 h 降水量 降水等级 24 h 降水量
小雨 0.1~9.9 暴雨 50.0~99.9
中雨 10.0~24.9 大暴雨 100.0~250.0
大雨 25.0~49.9 特大暴雨 >250.0
Tab.1 Classification of precipitation levels mm
Fig.3 Comparison of model assessment indexes before and after post-processing for all grids with different lead times
Fig.4 Spatial distribution of model assessment indexes before and after post-processing for different lead times
Fig.5 Comparison of model assessment indexes of areal rainfall before and after post-processing over Yonganxi and Shifengxi watershed for different lead times
降水分级 N
永安溪 始丰溪 平原区域
小雨 2652 2665 2645
中雨 91 82 98
大雨 13 11 17
暴雨 2 1 2
Tab.2 Cumulative occurrence frequency of precipitation classification in Yongan, Shifeng and plain regions
地域 NA NB NC TS
处理前 处理后 处理前 处理后 处理前 处理后 处理前 处理后
永安溪 2082 2488 423 196 257 78 0.754 0.900
始丰溪 2084 2502 431 191 247 69 0.755 0.906
平原 2076 2469 416 209 270 84 0.752 0.894
Tab.3 TS scores items of ECMWF forecast products before and after post-processing at three regions during rainy season
Fig.6 Comparison of TS scores of ECMWF forecast products before and after post-processing
Fig.7 Distribution of 72h cumulative precipitation for two typhoons
Fig.8 Comparison of 6 h areal rainfall of two typhoons at three regions
台风 区域 RMSE/mm MAE/mm CC RB
处理前 处理后 处理前 处理后 处理前 处理后 处理前 处理后
2012年“海葵” 永安溪 14.08 1.32 11.41 0.81 0.37 0.99 ?0.852 ?0.085
始丰溪 17.59 1.57 11.41 0.94 0.36 0.99 ?0.879 ?0.072
平原区域 17.07 1.52 11.20 1.15 0.34 0.99 ?0.902 ?0.099
2015年“苏迪罗” 永安溪 24.34 2.11 19.01 1.64 0.51 0.99 ?0.931 ?0.081
始丰溪 27.11 2.51 18.88 1.85 0.49 0.99 ?0.931 ?0.092
平原区域 29.57 2.49 20.24 1.68 0.36 0.99 ?0.898 ?0.076
Tab.4 Model assessment indexes of three regions during two typhoons
[1]   BLACUTT L, HERDIES D, GONCALVES L, et al Precipitation comparison for the CFSR, MERRA, TRMM 3B42 and combined scheme datasets in Bolivia[J]. Atmospheric Research, 2015, 163: 117- 131
doi: 10.1016/j.atmosres.2015.02.002
[2]   DUAN Z, LIU J Z, TUO Y, et al Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales[J]. Science of the Total Environment, 2016, 573: 1536- 1553
doi: 10.1016/j.scitotenv.2016.08.213
[3]   陈超辉, 王勇, 杜钧 欧洲业务集合预报系统进展[J]. 气象科技进展, 2020, 10 (2): 19- 29
CHEN Chao-hui, WANG Yong, DU Jun Overview of the European operational ensemble prediction systems[J]. Advances in Meteorological Science and Technology, 2020, 10 (2): 19- 29
doi: 10.3969/j.issn.2095-1973.2020.02.004
[4]   LI W, DUAN Q, WANG J Factors influencing the performance of regression-based statistical postprocessing models for short-term precipitation forecasts[J]. Weather and Forecasting, 2019, 34 (6): 2067- 2084
doi: 10.1175/WAF-D-19-0121.1
[5]   郝福亮, 王旭 数值集合降雨预测的校正后处理方法研究[J]. 水资源于水工程学报, 2022, 33 (2): 460- 465
HAO Fu-liang, WANG Xu Post-correction method of numerical ensemble rainfall prediction[J]. Journal of Water Resources and Water Engineering, 2022, 33 (2): 460- 465
[6]   代刊, 朱跃建, 毕宝贵 集合模式定量降水预报的统计后处理技术研究综述[J]. 气象学报, 2018, 76 (4): 493- 510
DAI Kan, ZHU Yue-jian, BI Bao-gui The review of statistical post-process technologies for quantitative precipitation forecast of ensemble prediction system[J]. Acta Meteorologica Sinica, 2018, 76 (4): 493- 510
doi: 10.11676/qxxb2018.015
[7]   ZHAO T, BENNETT J, WANG Q, et al How suitable is quantile mapping for postprocessing GCM precipitation forecasts?[J]. Journal of Climate, 2017, 30 (9): 3185- 3196
doi: 10.1175/JCLI-D-16-0652.1
[8]   ANDREW S, ZHAO T, QUAN J, et al A Bayesian modelling method for post-processing daily sub-seasonal to seasonal rainfall forecasts from global climate models and evaluation for 12 Australian catchments[J]. Hydrology and Earth System Sciences, 2018, 22 (2): 1615- 1628
doi: 10.5194/hess-22-1615-2018
[9]   ROBERTSON D, SHRESTHA D, WANG Q Post-processing rainfall forecasts from numerical weather predic-tion models for short-term streamflow forecasting[J]. Hydrology and Earth System Sciences Discussions, 2013, 10 (5): 6765- 6806
[10]   BAEZ V, ZAMBRANO B, BECK H, et al RF-MEP: a novel random forest method for merging gridded precipitation products and ground-based measurements[J]. Remote Sensing of Environment, 2020, 239: 111606
doi: 10.1016/j.rse.2019.111606
[11]   ROMILLY T, GEBREMICHAEL M Evaluation of satellite rainfall estimates over Ethiopian River basins[J]. Hydrology and Earth System Sciences, 2011, 15 (5): 1505- 1514
doi: 10.5194/hess-15-1505-2011
[12]   QIU M H, ZHAO P L, ZHANG K, et al. A short-term rainfall prediction model using multi-task convolutional neural networks [C]// 2017 IEEE International Conference on Data Mining. New Orleans: IEEE, 2017: 395–404.
[13]   KRASNOPOLSKY V, LIN Y A neural network nonlinear multi-model ensemble to improve precipitation forecasts over continental US[J]. Advances in Meteorology, 2012, 649450
[14]   皇甫江, 胡志群, 郑佳锋, 等 利用深度学习开展偏振雷达定量降水估测研究[J]. 气象学报, 2022, 80 (4): 565- 577
HUANGFU Jiang, HU Zhi-qun, ZHENG Jia-feng A study on polarization radar quantitative precipitation estimation using deep learning[J]. Acta Meteorologica Sinica, 2022, 80 (4): 565- 577
doi: 10.11676/qxxb2022.046
[15]   NI L L, WANG D, SINGH V P, et al Streamflow and rainfall forecasting by two long short-term memory-based models[J]. Journal of Hydrology, 2020, 583: 124296
doi: 10.1016/j.jhydrol.2019.124296
[16]   韩明星, 印萍, 褚忠信, 等 椒江流域水沙变化特征及人类活动影响[J]. 海洋地质前沿, 2022, 38 (12): 26- 39
HAN Ming-xing, YIN Ping, CHU Zhong-xin, et al Characteristics and influencing factors of water and sediment changes in Jiaojiang River Basin[J]. Marine Geology Frontiers, 2022, 38 (12): 26- 39
doi: 10.16028/j.1009-2722.2022.168
[17]   SHEN Y, ZHAO P, PAN Y, et al A high spatiotemporal gauge-satellite merged precipitation analysis over China[J]. Journal of Geophysical Research: Atmospheres, 2014, 119: 3063- 3075
doi: 10.1002/2013JD020686
[18]   KRIZHEVSKY A, SUTSKEVER I, HINTON G ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60 (6): 84- 90
doi: 10.1145/3065386
[19]   LECUN Y, BENGIO Y, HINTON G Deep learning[J]. Nature, 2015, 521: 436- 444
doi: 10.1038/nature14539
[20]   WU H, YANG Q, LIU J, et al A spatiotemporal deep fusion model for merging satellite and gauge precipitation in China[J]. Journal of Hydrology, 2020, 584: 124664
doi: 10.1016/j.jhydrol.2020.124664
[21]   郭换换, 智协飞, 段明铿 数值天气预报中的不一致性问题综述[J]. 气象科学, 2016, 36 (1): 134- 140
GUO Huan-huan, ZHI Xia-fei, DUAN Ming-keng A review of inconsistencies in numerical weather forecasting[J]. Journal of the Meteorological Sciences, 2016, 36 (1): 134- 140
doi: 10.3969/2014jms.0063
[1] Zhe YANG,Hong-wei GE,Ting LI. Framework of feature fusion and distribution with mixture of experts for parallel recommendation algorithm[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1317-1325.
[2] Yun-hong LI,Jiao-jiao DUAN,Xue-ping SU,Lei-tao ZHANG,Hui-kang YU,Xing-rui LIU. Calligraphy generation algorithm based on improved generative adversarial network[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1326-1334.
[3] Wei QUAN,Yong-qing CAI,Chao WANG,Jia SONG,Hong-kai SUN,Lin-xuan LI. VR sickness estimation model based on 3D-ResNet two-stream network[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1345-1353.
[4] Xin-lei ZHOU,Hai-ting GU,Jing LIU,Yue-ping XU,Fang GENG,Chong WANG. Daily water supply prediction method based on integrated learning and deep learning[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1120-1127.
[5] Pei-feng LIU,Lu QIAN,Xing-wei ZHAO,Bo TAO. Continual learning framework of named entity recognition in aviation assembly domain[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1186-1194.
[6] Jia-chi ZHAO,Tian-qi WANG,Li-fang ZENG,Xue-ming SHAO. Rapid prediction of unsteady aerodynamic characteristics of flapping wing based on GRU[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1251-1256.
[7] Xiao-lu CAO,Fu-nan LU,Xiang ZHU,Li-bo WENG,Shu-fang LU,Fei GAO. Sketch-based compatible clothing image generation[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 939-947.
[8] Yu-ting SU,Rong-xuan LU,Wei ZHANG. Vehicle re-identification algorithm based on attention mechanism and adaptive weight[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 712-718.
[9] Qing-lu MA,Jia-ping LU,Xiao-yao TANG,Xue-feng DUAN. Improved YOLOv5s flame and smoke detection method in road tunnels[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 784-794.
[10] Yao ZENG,Fa-qin GAO. Surface defect detection algorithm of electronic components based on improved YOLOv5[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 455-465.
[11] Huan LAN,Jian-bo YU. Steel surface defect detection based on deep learning 3D reconstruction[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 466-476.
[12] Ju-xiang ZENG,Ping-hui WANG,Yi-dong DING,Lin LAN,Lin-xi CAI,Xiao-hong GUAN. Graph neural network based node embedding enhancement model for node classification[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 219-225.
[13] Jian-sha LU,Qin BAO,Hong-tao TANG,Yi-ping SHAO,Wen-bin ZHAO. Optimal tag selection method for device-free human tracking system[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 415-425.
[14] Jun-chi MA,Xiao-xin DI,Zong-tao DUAN,Lei TANG. Survey on program representation learning[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 155-169.
[15] Chen YE,Hong-fei ZHAN,Ying-jun LIN,Jun-he YU,Rui WANG,Wu-chang ZHONG. Design knowledge recommendation based on inference-context-aware activation model[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 32-46.