Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (9): 1746-1755    DOI: 10.3785/j.issn.1008-973X.2023.09.006
    
Fire resistance performance and protection of long-span suspension bridge main cable
Xue-hong LI1(),Yu-xuan LEI1,Jun ZHAO2,Zhi-ming GUO3,Jun-jie YU4,Xiu-li XU1,*()
1. College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China
2. Jiangsu FaErSheng Cable Limited Company, Jiangyin 214445, China
3. Nanjing Public Engineering Construction Center, Nanjing 210019, China
4. East China Branch of China Railway Major Bridge Reconnaissance and Design Institute Limited Company, Nanjing 210031, China
Download: HTML     PDF(4116KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to analyze the fire resistance performance of the main cable and to propose the appropriate fire resistance protection scheme, based on the actual project, the calculation method for tank truck fire model was adopted to make a comparative analysis from the aspects of the tank truck fire burning form, the fire location and the fire burning state. The most unfavorable fire scenario of a suspension bridge was determined as windless condition+oil tank fire+top surface and near main cable side combustion+mid-span near sling position. The Ansys software was used to analyze the temperature profile and the fire resistance limits of the main cable in the most unfavorable fire scenarios. The fire resistance limit of the main cable was 48 minutes and the maximum failure thickness was 90 mm. Through the analysis and the investigation of various fireproof materials, a fireproof structure of high-silica composite material was proposed. After 60 min of an elevated temperature test, the inner temperature of the fireproof structure of the specimen was 484 ℃, and the fire resistance was slightly improved after the compression of the protective structure. Based on the test results and the numerical simulation, a 10 mm thick high-silica composite material fireproof structure was obtained. The obtained structure could meet the fire resistance design goal that the outer surface temperature of the main cable should not exceed 300 ℃ after 60 min of a fire.



Key wordsmain cables for suspension bridge      tanker fire      most unfavorable fire scenario      air heating curve      fire resistance      fire protection target      protection scheme     
Received: 13 November 2022      Published: 16 October 2023
CLC:  U 447  
Fund:  江苏省交通运输科技项目(2021QD06);江苏省研究生实践创新计划(SJCX22_0464)
Corresponding Authors: Xiu-li XU     E-mail: lixuehongnj@163.com;njxuxiuli@163.com
Cite this article:

Xue-hong LI,Yu-xuan LEI,Jun ZHAO,Zhi-ming GUO,Jun-jie YU,Xiu-li XU. Fire resistance performance and protection of long-span suspension bridge main cable. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1746-1755.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.09.006     OR     https://www.zjujournals.com/eng/Y2023/V57/I9/1746


大跨悬索桥主缆抗火性能及其防护

为了分析主缆的抗火性能并提出适宜的抗火防护方案,基于实际工程,采用油罐车燃烧火灾模型计算方法,分别从油罐车火灾燃烧的形式、火灾发生的位置、火灾燃烧的状态等方面进行对比分析,确定悬索桥最不利火灾场景为无风工况+油罐火灾+顶面和近主缆侧面燃烧+跨中靠近吊索位置. 采用Ansys软件分析最不利火灾场景下主缆的温度分布及耐火极限,得到主缆的耐火极限为48 min,最大失效厚度为90 mm. 通过对各类防火材料分析和调研,提出高硅氧复合材料防火结构;在高温试验60 min后,试件防火结构内侧温度为484 ℃,压缩后的防护结构的抗火性能略有提升. 基于试验结果并结合数值模拟,得到10 mm厚高硅氧复合防火结构;该结构可以满足在火灾发生后60 min主缆外表面温度不超过300 ℃的抗火设计目标.


关键词: 悬索桥主缆,  油罐车火灾,  最不利火灾场景,  空气升温曲线,  抗火性能,  抗火防护目标,  防护方案 
Fig.1 General layout of Nanjing Xianxin Road river crossing passage bridge
Fig.2 Standard cross-sectional of stiffened beam
Fig.3 Finite element model of whole bridge
Fig.4 Cross section of main cable
Fig.5 Fire calculation model on fire dynamics simulator
Fig.6 Heat release rate curve of each combustion surface
燃烧面 E/kJ QP/MW t1/s E1/kJ
顶面 1.68×109 59.2 562 $1.1 \times {10^7}$
近主缆侧面 1.68×109 47.36 502 $7.9 \times {10^6}$
远离主缆侧面 1.68×109 47.36 502 $7.9 \times {10^6}$
首端面 1.68×109 11.84 251 $9.9 \times {10^5}$
尾端面 1.68×109 11.84 251 $9.9 \times {10^5}$
Tab.1 Key parameters of oil tank fire
参数 数值
泄漏孔半径r/m 0.03
燃油泄漏速率QLiq/(kg·s?1) 9.45
泄漏燃烧油池最大直径Dm/m 14.8
燃烧油池扩散至最大直径时间tk/s 213
燃烧油池直径扩大速度Vp/(m·s?1) 0.069
泄漏油池火的燃烧时间tmax/s 4128
Tab.2 Key parameters of oil pool fire
Fig.7 Comparison of air temperature distribution for tanker fire
Fig.8 Air temperature variations with height at different horizontal distance from tank edge to main cable
Fig.9 Air temperature field in most unfavorable fire scenario
Fig.10 Air temperature distribution along height in most unfavorable fire scenario
Fig.11 Comparison of three temperature rise curves
Fig.12 Temperature distribution curve of main cable section along radius direction
Fig.13 Average temperature variation curve of main cable cross-section with time at different heights
Fig.14 Average temperature variation curve of main cable cross-section with height
Fig.15 Finite element model of main cable
Fig.16 Time history curves for two types of unprotected main cables in most severe fire scenarios
Fig.17 Specimen plan, measuring point layout and specimen appearance after processing
Fig.18 Heating curve in furnace for material comparison test
Fig.19 Specimens after Comparison test of protective materials
Fig.20 Time history curve of temperature at each measuring point with different schemes
Fig.21 Heating curves in furnace of main cable fire resistance test
Fig.22 Appearance of specimen before and after effects test of protective
Fig.23 Each measuring point temperature of specimen at 60 min
Fig.24 Appearance of specimen before and after diameter influence effect test of main cable
Fig.25 Correlation curve of diameter and cross-section shape factor with temperature of specimen
Fig.26 Curve of outermost temperature variation with main cable diameter
Fig.27 Time history curve of outermost temperature after main cable protection
[1]   张岗, 贺拴海, 侯炜, 等 预应力混凝土桥梁抗火研究综述[J]. 长安大学学报: 自然科学版, 2018, 38 (6): 1- 10
ZHANG Gang, HE Shuan-hai, HOU Wei, et al Review on fire resistance of prestressed-concrete bridge[J]. Journal of Chang'an University, 2018, 38 (6): 1- 10
[2]   张岗, 贺拴海, 宋超杰, 等 钢结构桥梁抗火研究综述[J]. 中国公路学报, 2021, 34 (1): 1- 11
ZHANG Gang, HE Shuan-hai, Song Chao-jie, et al Review on fire resistance of steel structural bridge girders[J]. China Journal of Highway and Transport, 2021, 34 (1): 1- 11
doi: 10.3969/j.issn.1001-7372.2021.01.001
[3]   崔闯, 杨正祥, 王昊, 等 桥梁抗爆与抗火2020年度研究进展[J]. 土木与环境工程学报(中英文), 2021, 43 (Suppl.1): 207- 221
CUI Chuang, YANG Zheng-xiang, WANG Hao, et al State-of-the-art review of explosion and fire resistance of bridges in 2020[J]. Journal of Civil and Environmental Engineering, 2021, 43 (Suppl.1): 207- 221
[4]   王莹, 刘沐宇 大跨径悬索桥缆索抗火模拟方法[J]. 中南大学学报: 自然科学版, 2016, 47 (6): 2091- 2099
WANG Ying, LIU Mu-yu Fire resistance simulation of main cable and sling for long-span suspension bridge[J]. Journal of Central South University: Science and Technology, 2016, 47 (6): 2091- 2099
[5]   李艳, 汪剑, 周国华 大跨径悬索桥缆索体系抗火设计研究[J]. 公路, 2018, 63 (5): 94- 100
LI Yan, WANG Jian, ZHOU Guo-hua Research on fire resistance design of cable system for long-span suspension bridge[J]. Highway, 2018, 63 (5): 94- 100
[6]   中华人民共和国住房和城乡建设部. 建筑钢结构防火技术规范: GB 51249—2017[S]. 北京: 中国计划出版社, 2017.
[7]   KODUR V, AZIZ E, DWAIKAT M Evaluating fire resistance of steel girders in bridges[J]. Journal of Bridge Engineering, 2013, 18: 633- 643
doi: 10.1061/(ASCE)BE.1943-5592.0000412
[8]   MA R, CUI C, MA M, et al Numerical simulation and simplified model of vehicle-induced bridge deck fire in the full-open environment considering wind effect[J]. Structure and Infrastructure Engineering, 2021, 17 (12): 1698- 1709
doi: 10.1080/15732479.2020.1832535
[9]   LEE J, CHOI K, YOON J, et al. Numerical analysis-based structural behavior assessment of a cable-stayed bridge undertakers fire [J]. Structure and Infrastructure Engineering, 2022: 1-18.
[10]   ANSYS. APDL coupled-field analysis guide [EB/OL]. (2011-10-10)[2022-09-28]. https://www.ansys.com.
[11]   孙训方. 材料力学[M]. 北京: 高等教育出版社, 2019.
[12]   KOUADRI-HENNI A, SEANG C, MALARD B, et al Residual stresses induced by laser welding process in the case of a dual-phase steel DP600: simulation and experimental approaches[J]. Materials and Design, 2017, 123: 89- 102
doi: 10.1016/j.matdes.2017.03.022
[13]   李雪红, 杨星墀, 徐秀丽, 等 大跨桥梁油罐车燃烧火灾模型计算方法研究[J]. 中国公路学报, 2022, 35 (6): 147- 157
LI Xue-hong, YANG Xing-chi, XU Xiu-li, et al Research on calculation method for tank truck fire model on large-span bridge[J]. China Journal of Highway and Transport, 2022, 35 (6): 147- 157
doi: 10.3969/j.issn.1001-7372.2022.06.013
[14]   孙亚宁, 高威, 刘乃安, 等 矩形火羽流燃烧特征的实验研究[J]. 燃烧科学与技术, 2020, 26 (6): 507- 511
SUN Ya-ning, GAO Wei, LIU Nai-an, et al Experimental study on characteristics of flame plume[J]. Journal of Combustion Science and Technology, 2020, 26 (6): 507- 511
[15]   高云骥, 朱国庆 火羽流轴向温度大涡模拟与实验比较[J]. 消防科学与技术, 2014, 33 (8): 857- 859
GAO Yun-ji, ZHU Guo-qing Comparison of large eddy simulation and experimental study on axial temperature of flame plume[J]. Fire Science and Technology, 2014, 33 (8): 857- 859
doi: 10.3969/j.issn.1009-0029.2014.08.002
[16]   JALURIA Y, COOPER L Y Negatively buotant wall flows generated in enclosure fires[J]. Progress in Energy and Combustion Science, 1989, 15 (2): 159- 182
doi: 10.1016/0360-1285(89)90014-2
[17]   LU J, LIU H B, CHEN Z H Post-fire mechanical properties of low-relaxation hot-dip galvanized prestressed steel wires[J]. Journal of Constructional Steel Research, 2017, 136: 110- 127
doi: 10.1016/j.jcsr.2017.05.012
[18]   杨冬晖, 李猛, 尚坤 航天服隔热材料技术研究进展[J]. 航空材料学报, 2016, 36 (2): 87- 96
YANG Dong-hui, LI Meng, SHANG Kun Development of thermal insulation materials technology for spacesuit[J]. Journal of Aeronautical Materials, 2016, 36 (2): 87- 96
doi: 10.11868/j.issn.1005-5053.2016.2.014
[19]   朱京城, 张嘉琪 火灾救生舱多层隔热材料降温效果试验研究[J]. 中国安全科学学报, 2019, 29 (9): 90- 95
ZHU Jing-cheng, ZHANG Jia-qi Study on cooling effects of insulation layers of life rescue capsule[J]. China Safety Science Journal, 2019, 29 (9): 90- 95
doi: 10.16265/j.cnki.issn1003-3033.2019.09.014
[20]   GORLE B S K, SMIRNOVA I, DRAGAN M, et al Crystallization under supercritical conditions in aerogels[J]. Journal of Supercritical Fluids The, 2008, 44: 78- 84
doi: 10.1016/j.supflu.2007.08.004
[1] JIANG Xiang, TONG Gen-shu, ZHANG Lei. Fire resistance and bending bearing capacity of fire-resistant steel-concrete composite beams[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1482-1493.
[2] JIANG Xiang, TONG Gen shu, ZHANG Lei. Experiments on fire-resistance performance of fire-resistant steel-concrete composite beams[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1463-1470.
[3] LIU Yi-xiang, TONG Gen-shu, ZHANG Lei. Fire resistance and load-bearing capacity of concrete filled fire-resistant steel tubular columns with circular cross-section[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 208-217.
[4] LIU Yi xiang, TONG Gen shu, ZHANG Lei. Fire protection thickness of concrete filled fire resistant steel tubular columns[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(12): 2387-2396.