Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (3): 646-654    DOI: 10.3785/j.issn.1008-973X.2024.03.021
    
Dimension prediction method of injection molded parts based on multi-feature fusion of DL-BiGRU
Qingjie QIAN1(),Junhe YU1,*(),Hongfei ZHAN1,Rui WANG1,Jian HU2
1. Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
2. The First Industrial Design and Research Institute of CMCU Engineering Co. Ltd, Chongqing 400039, China
Download: HTML     PDF(1372KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A multi-feature fusion injection molded part dimension prediction method based on double-layer bidirectional gated cyclic unit network (DL-BiGRU) was proposed, to fully explore the high-frequency time series features inside the mold cavity and the state features of the injection molding machine in the injection molding process. The relationship between the high-frequency time series features obtained from sensors inside the mold cavity and the dimensions of injection molded parts was analyzed. A DL-BiGRU network was utilized to automatically extract the time series features from the high-frequency data, representing the dynamic characteristics of the molding process of the injection molded parts. The instantaneous features of the injection molding process can be represented, by sampling the high-frequency time series data inside the mold cavity and flattening it. An end-to-end deep learning multi-feature fusion framework was constructed by integrating the time series features, instantaneous features, and molding machine state features. The above three characteristics were fused and jointly trained to improve the dimension prediction accuracy of injection molded parts. The model was verified on the data set of injection molding, and the results showed that the average mean square error of the predicted dimension was 4.7×10?4 mm2, and the minimum error fluctuation was on the order of 10?5 mm2. The model has high prediction accuracy and stability.



Key wordsinjection molding      deep learning      bidirectional gated cyclic unit network (BiGRU)      multi-feature fusion      dimension prediction     
Received: 28 March 2023      Published: 05 March 2024
CLC:  TP 181  
Fund:  国家自然科学基金资助项目(71671097); 国家重点研发计划资助项目(2019YFB1707101, 2019YFB1707103); 浙江省省属高校基本科研业务费资助项目(SJLZ2023001); 浙江省公益技术应用研究计划资助项目(LGG20E050010).
Corresponding Authors: Junhe YU     E-mail: qianqingjie@foxmail.com;yujunhe@nbu.edu.cn
Cite this article:

Qingjie QIAN,Junhe YU,Hongfei ZHAN,Rui WANG,Jian HU. Dimension prediction method of injection molded parts based on multi-feature fusion of DL-BiGRU. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 646-654.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.03.021     OR     https://www.zjujournals.com/eng/Y2024/V58/I3/646


基于DL-BiGRU多特征融合的注塑件尺寸预测方法

为了充分挖掘注塑成型过程中模腔内的高频时序特征和注塑成型机状态特征,提出基于双层双向门控循环单元网络(DL-BiGRU)的多特征融合注塑件尺寸预测方法. 分析膜腔内传感器高频时序特征与注塑件尺寸间的关联性,采用DL-BiGRU网络从高频数据中自动提取时序特征,表征注塑件成型过程状态变化特性. 通过采样模腔内高频时序数据进行展成平铺,表征注塑成型的瞬时特征. 融合时序特征、瞬时特征和成型机状态特征,构建端到端的深度学习多特征融合框架. 将上述3种特征融合并联合训练,提升注塑件尺寸预测精度. 在注塑成型数据集上进行模型验证,预测尺寸平均均方误差为4.7×10?4 mm2,最小误差波动为10?5 mm2量级,模型具有较高的预测精度和稳定性.


关键词: 注塑成型,  深度学习,  双向门控循环单元网络 (BiGRU),  多特征融合,  尺寸预测 
Fig.1 Main sensor position distribution diagram of data acquisition for injection molding process
尺寸Dmax/mmDmin/mmT/mm
size1300.150299.8500.30
size2200.075199.9250.15
size3200.075199.9250.15
Tab.1 Dimension range and tolerance of injection molded part
字段名特征名
Sensor1模内压力
Sensor5模内温度
Sensor8模温机水流体积流量计实际体积流量
MouldTemp9公模温度
MouldTemp12母模温度
SP实际螺杆位置
Tab.2 Corresponding features of sensor high-frequency field
字段名特征名
EL_CYC_TIME周期时间
EL_NZL_MEAN温度均值
EL_IV_END_STR切换位置
EL_LAST_COOL_TIME后冷却时间
EL_CLAMP_PRESS锁模压力
EL_MAX_INJ_PRESS最大注塑压力
Tab.3 Corresponding features of forming machine status field
Fig.2 Data curve of high frequency time sequence of key sensor for injection parts with three production cycles
Fig.3 DL-BiGRU structure
Fig.4 Dimension prediction model of injection molded part based on multi-feature fusion of DL-BiGRU
模型参数EpochBiGRU
(一层)
BiGRU
(二层)
FC
实验取值400、500、600256、512、1024256、512、102440、50、60
最终取值50051225650
Tab.4 Parameters table of experimental model
模 型 结 构size1size2size3
MSE/mm2MAE/mmMSE/mm2MAE/mmMSE/mm2MAE/mm
SPC+FC+RG0.0010900.0237620.0013950.0293090.0009880.024219
GRU+FC+RG0.0013060.0292900.0013330.0285090.0008470.022446
[GRU+FC,SPC+FC,GP+FC]+FC+RG0.0005470.0181070.0009200.0236470.0004480.016595
[DL-GRU+FC,SPC+FC,GP+FC]+FC+RG0.0004940.0172140.0008330.0225770.0006760.019903
[BiGRU+FC,SPC+FC,GP+FC]+FC+RG0.0004990.0170210.0005490.0181980.0004310.016219
[DL-BiGRU+FC,SPC+FC,GP+FC]+FC+RG0.0004720.0165700.0005120.0177760.0004270.016107
Tab.5 Prediction error of different ablation models
Fig.5 Error boxplots for different ablation models
类别方法size1size2size3
MSE/mm2MAE/mmMSE/mm2MAE/mmMSE/mm2MAE/mm
浅层学习SVR0.0019270.0333500.0013470.0297930.0016970.033708
LGB0.0017490.0312740.0029090.0399850.0012370.026022
XGB0.0013390.0310620.0008850.0240660.0007750.022670
深度学习MLP0.0011150.0241870.0009300.0241670.0010330.024776
LSTM0.0017400.0314600.0012750.0289850.0012290.026163
GRU0.0013060.0292900.0013330.0285090.0008470.022446
融合模型DL-BiGRU0.0004720.0165700.0005120.0177760.0004270.016107
IMP/%57.7031.5042.1026.1044.9028.90
Tab.6 Comparison of prediction errors between commonly used dimension prediction models and DL-BiGRU models
Fig.6 Comparison graph of predicted values and ground truth in injection molding dataset using DL-BiGRU model
[1]   CHEN J Y, TSENG C C, HUANG M S. Quality indexes design for online monitoring polymer injection molding [EB/OL]. (2019−08−01). https://doi.org/10.1155/2019/3720127.
[2]   CHAREST M, FINN R, DUBAY R. Integration of artificial intelligence in an injection molding process for on-line process parameter adjustment [C]// 2018 Annual IEEE International Systems Conference . Vancouver: IEEE, 2018: 1−6.
[3]   OGORODNYK O, LYNGSTAD O V, LARSEN M, et al. Application of machine learning methods for prediction of parts quality in thermoplastics injection molding [C]// Advanced Manufacturing and Automation VIII . Singapore: Springer, 2019: 237−244.
[4]   OGORODNYK O, LYNGSTAD O V, LARSEN M, et al. Prediction of width and thickness of injection molded parts using machine learning methods [M]// KISHITA Y, MATSUMOTO M, INOUE M, et al. EcoDesign and sustainability I: products, services, and business models . Singapore: Springer, 2021: 455−469.
[5]   YIN F, MAO H, HUA L, et al Back propagation neural network modeling for warpage prediction and optimization of plastic products during injection molding[J]. Materials and design, 2011, 32 (4): 1844- 1850
doi: 10.1016/j.matdes.2010.12.022
[6]   GÜLÇÜR M, WHITESIDE B A study of micromanufacturing process fingerprints in micro-injection moulding for machine learning and Industry 4.0 applications[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115 (5/6): 1943- 1954
[7]   宋建, 陈广森, 陈敬福 基于特征选择和贝叶斯优化 LightGBM 的注塑制品尺寸预测[J]. 工程塑料应用, 2021, 49 (8): 54- 60
SONG Jian, CHEN Guangsen, CHEN Jingfu Size prediction of injection molded products based on feature selection and bayesian optimized LightGBM[J]. Engineering Plastic Application, 2021, 49 (8): 54- 60
doi: 10.3969/j.issn.1001-3539.2021.08.010
[8]   宋建, 王文龙, 李东, 等 基于Stacking集成学习的注塑件尺寸预测方法[J]. 华南理工大学学报:自然科学版, 2022, 50 (6): 19- 26
SONG Jian, WANG Wenlong, LI Dong, et al Injection molding part size prediction method based on Stacking ensemble learning[J]. Journal of South China University of Technology: Natural Science Edition, 2022, 50 (6): 19- 26
[9]   NIAN S C, FANG Y C, HUANG M S In-mold and machine sensing and feature extraction for optimized IC-tray manufacturing[J]. Polymers, 2019, 11 (8): 1348
doi: 10.3390/polym11081348
[10]   HUANG M S Cavity pressure based grey prediction of the filling-to-packing switchover point for injection molding[J]. Journal of Materials Processing Technology, 2007, 183 (2/3): 419- 424
[11]   FARAHANI S, BROWM N, LOFTIS J, et al Evaluation of in-mold sensors and machine data towards enhancing product quality and process monitoring via Industry 4.0[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105: 1371- 1389
doi: 10.1007/s00170-019-04323-8
[12]   HOTAIT H, CHIEMENTIN X, MOUCHAWEH M S, et al Monitoring of ball bearing based on improved real-time OPTICS clustering[J]. Journal of Signal Processing Systems, 2021, 93: 221- 237
doi: 10.1007/s11265-020-01571-w
[13]   CHEN Z, WU M, ZHAO R, et al Machine remaining useful life prediction via an attention-based deep learning approach[J]. IEEE Transactions on Industrial Electronics, 2021, 68 (3): 2521- 2531
doi: 10.1109/TIE.2020.2972443
[14]   FENG T T, GUO L, GAO H, et al A new time-space attention mechanism driven multi-feature fusion method for tool wear monitoring[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120: 5633- 5648
doi: 10.1007/s00170-022-09032-3
[15]   WICK C, EHRIG F, SCHUSTER G. Data driven injection moulding [C]// Advances in Polymer Processing 2020: Proceedings of the International Symposium on Plastics Technology . Heidelberg: Springer, 2020: 128−136.
[16]   陈金伟, 林旭光 注塑成型模腔压力监测技术及其应用[J]. 塑料科技, 2011, 39 (8): 59- 62
CHEN Jinwei, LIN Xuguang Cavity pressure measurement technology during injection molding process and its applications[J]. Plastic Technology, 2011, 39 (8): 59- 62
doi: 10.3969/j.issn.1005-3360.2011.08.006
[17]   CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder–decoder for statistical machine translation [C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing . Doha: Association for Computational Linguistics, 2014: 1724−1734.
[18]   SHE D, JIA M A BiGRU method for remaining useful life prediction of machinery[J]. Measurement, 2021, 167: 108277
doi: 10.1016/j.measurement.2020.108277
[19]   HAN W, NAN L, SU M, et al Research on the prediction method of centrifugal pump performance based on a double hidden layer BP neural network[J]. Energies, 2019, 12 (14): 2709
doi: 10.3390/en12142709
[20]   于志刚, 辛小军, 范远洪, 等. 基于双层GRU神经网络的油田注水预测方法研究 [J]. 化工自动化及仪表, 2022, 49(01): 41-46.
YU Zhigang, XIN Xiaojun, FAN Yuanhong, et al. Research on oilfield water injection prediction method based on double hidden layer GRU model [J]. Chemical Automation and Instrumentation , 2022, 49(1): 41−46.
[1] Mingjun SONG,Wen YAN,Yizhao DENG,Junran ZHANG,Haiyan TU. Light-weight algorithm for real-time robotic grasp detection[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 599-610.
[2] Xinhua YAO,Tao YU,Senwen FENG,Zijian MA,Congcong LUAN,Hongyao SHEN. Recognition method of parts machining features based on graph neural network[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 349-359.
[3] Xuefei SUN,Ruifeng ZHANG,Xin GUAN,Qiang LI. Lightweight and efficient human pose estimation with enhanced priori skeleton structure[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 50-60.
[4] Chao-hao ZHENG,Zhi-wei YIN,Gang-feng ZENG,Yue-ping XU,Peng ZHOU,Li LIU. Post-processing of numerical precipitation forecast based on spatial-temporal deep learning model[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1756-1765.
[5] Zhe YANG,Hong-wei GE,Ting LI. Framework of feature fusion and distribution with mixture of experts for parallel recommendation algorithm[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1317-1325.
[6] Yun-hong LI,Jiao-jiao DUAN,Xue-ping SU,Lei-tao ZHANG,Hui-kang YU,Xing-rui LIU. Calligraphy generation algorithm based on improved generative adversarial network[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1326-1334.
[7] Wei QUAN,Yong-qing CAI,Chao WANG,Jia SONG,Hong-kai SUN,Lin-xuan LI. VR sickness estimation model based on 3D-ResNet two-stream network[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1345-1353.
[8] Xin-lei ZHOU,Hai-ting GU,Jing LIU,Yue-ping XU,Fang GENG,Chong WANG. Daily water supply prediction method based on integrated learning and deep learning[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1120-1127.
[9] Pei-feng LIU,Lu QIAN,Xing-wei ZHAO,Bo TAO. Continual learning framework of named entity recognition in aviation assembly domain[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1186-1194.
[10] Jia-chi ZHAO,Tian-qi WANG,Li-fang ZENG,Xue-ming SHAO. Rapid prediction of unsteady aerodynamic characteristics of flapping wing based on GRU[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1251-1256.
[11] Xiao-lu CAO,Fu-nan LU,Xiang ZHU,Li-bo WENG,Shu-fang LU,Fei GAO. Sketch-based compatible clothing image generation[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 939-947.
[12] Yu-ting SU,Rong-xuan LU,Wei ZHANG. Vehicle re-identification algorithm based on attention mechanism and adaptive weight[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 712-718.
[13] Qing-lu MA,Jia-ping LU,Xiao-yao TANG,Xue-feng DUAN. Improved YOLOv5s flame and smoke detection method in road tunnels[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 784-794.
[14] Yao ZENG,Fa-qin GAO. Surface defect detection algorithm of electronic components based on improved YOLOv5[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 455-465.
[15] Huan LAN,Jian-bo YU. Steel surface defect detection based on deep learning 3D reconstruction[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 466-476.