|
|
Structural deformation prediction of monitoring data based on bi-directional gate board learning system |
Xianglong LUO1( ),Yafei WANG2,Yanbo WANG1,Lixin WANG3,4 |
1. School of Information Engineering, Chang’an University, Xi’an 710064, China 2. Zhongxing Telecom Equipment Corporation, Xi’an 710111, China 3. China Railway First Survey and Design Institute Group Limited Company, Xi’an 710043, China 4. School of Civil Engineering and Architecture, Xi’an University of Technology, Xi’an 710048, China |
|
|
Abstract Aiming at the shortcomings of large computation load and poor real-time performance for deep learning models with monitoring data, combining the advantages of board learning system (BLS) and bi-directional long short term memory (Bi-LSTM) model, a structural deformation prediction model was proposed based on bi-directional gate board learning system (Bi-G-BLS). The cyclic feedback structure and the forget-gate structure were added to the feature nodes of BLS to improve the dependence of the current node on the previous node, and the internal features of the time series were extracted from the forward and reverse respectively to make full use of the bidirectional data characteristics. As a result, the prediction accuracy was improved effectively while the prediction time was greatly reduced. The test results of the measured monitoring data for the subway foundation pit settlement showed that compared with the gated recurrent unit (GRU), BLS, Bi-LSTM, and G-BLS models, the root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) of the proposed model were reduced by 21.04%, 12.81% and 24.41%. The prediction time of the proposed model was reduced by 99.59% compared to Bi-LSTM model with similar prediction accuracy. The results showed that the prediction speed and accuracy of the proposed model were significantly improved over the comparison models.
|
Received: 10 April 2023
Published: 27 March 2024
|
|
Fund: 国家重点研发计划资助项目(2018YFC0808706);国家自然科学基金资助项目(52078421);陕西省“特支计划”青年拔尖人才(陕组通字〔2018〕33号);中铁一院科研项目(院科19-40). |
基于双向门控式宽度学习系统的监测数据结构变形预测
监测数据深度学习预测模型运算量大、实时性差,为此结合宽度学习系统(BLS)和双向长短时记忆(Bi-LSTM)模型的优势,提出基于双向门控式宽度学习系统(Bi-G-BLS)的结构变形预测模型. 对BLS的特征节点增加循环反馈和遗忘门结构,提高当前节点对前一节点的依赖关系,分别从正向和反向提取时间序列的内部特征,充分挖掘数据的双向特征,在提高模型预测精确度的同时减少模型预测时间. 基于实测的地铁基坑沉降监测数据的测试结果显示,所提预测模型与门控循环单元(GRU)、BLS、Bi-LSTM、G-BLS模型相比,均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)平均分别降低了21.04%、12.81%、24.41%;在预测精度相近的情况下,所提模型的预测时间比Bi-LSTM模型降低了99.59%. 结果表明,所提模型在预测速度和精确度上较对比模型有明显提升.
关键词:
结构变形,
预测模型,
深度学习,
门控循环单元(GRU),
宽度学习系统(BLS)
|
|
[1] |
ZHANG H, SHI X, LAI L Research on time series analysis based deformation prediction model[J]. Advanced Materials Research, 2011, 250-253: 2888- 2891
doi: 10.4028/www.scientific.net/AMR.250-253.2888
|
|
|
[2] |
鄢士程, 解广成, 辛全明, 等 多监测条件下地铁明挖车站周边地表沉降预测分析[J]. 电子测量技术, 2022, 45 (2): 48- 54 YAN Shicheng, XIE Guangcheng, XIN Quanming, et al Prediction and analysis of surface settlement around subway open cut station under multi monitoring conditions[J]. Electronic Measurement Technology, 2022, 45 (2): 48- 54
|
|
|
[3] |
CHEN C, LU X, LI J, et al A novel settlement forecasting model for rockfill dams based on physical causes[J]. Bulletin of Engineering Geology and the Environment, 2021, 80: 7973- 7988
doi: 10.1007/s10064-021-02403-2
|
|
|
[4] |
GENG D, MA J, ZHAO Y. Electricity generation forecasting with wind power data: a grey model approach [C]// 2nd International Conference on Artificial Intelligence and Information Systems . [S. l.]: ACM, 2021: 17.
|
|
|
[5] |
ZENG B, DUAN H, ZHOU Y A new multivariable grey prediction model with structure compatibility[J]. Applied Mathematical Modelling, 2019, 75: 385- 397
doi: 10.1016/j.apm.2019.05.044
|
|
|
[6] |
ZHI Q, SONG J, GUO Z Prediction of soil creep deformation using unequal interval multivariable grey model[J]. Applied Mechanics and Materials, 2017, 864: 341- 345
doi: 10.4028/www.scientific.net/AMM.864.341
|
|
|
[7] |
陶永虎, 饶军应, 熊鹏, 等 软岩隧道大变形预测模型及支护措施[J]. 矿业研究与开发, 2021, 41 (5): 59- 66 TAO Yonghu, RAO Junying, XIONG Peng, et al Large deformation prediction model and supporting measures of soft rock tunnel[J]. Mining Research and Development, 2021, 41 (5): 59- 66
|
|
|
[8] |
张立亚, 张宏梅, 祝传广, 等 随机性非等间隔灰色模型在沉降预报中的应用[J]. 测绘地理信息, 2022, 47 (3): 38- 42 ZHANG Liya, ZHANG Hongmei, ZHU Chuanguang, et al Application of random non-equal interval grey model in settlement forecasting[J]. Journal of Geomatics, 2022, 47 (3): 38- 42
|
|
|
[9] |
张峰瑞, 姜谙男, 赵亮, 等 基于多变量GP-DE模型的隧道变形时间序列预测研究[J]. 现代隧道技术, 2021, 58 (1): 109- 116 ZHANG Fengrui, JIANG Annan, ZHAO Liang, et al Study on time series prediction of the tunnel deformation based on the multivariable GP-DE model[J]. Modern Tunnelling Technology, 2021, 58 (1): 109- 116
|
|
|
[10] |
刘建军, 王嘉伟, 陈琨, 等 时间序列回归预测模型在自动化监测中的应用[J]. 测绘通报, 2021, (6): 156- 158 LIU Jianjun, WANG Jiawei, CHEN Kun, et al The application of time series regression prediction model in automated monitoring[J]. Bulletin of Surveying and Mapping, 2021, (6): 156- 158
|
|
|
[11] |
田有良, 樊廷立, 唐超 面向地铁隧道表面渗漏水的快速检测技术[J]. 测绘通报, 2022, (9): 29- 33 TIAN Youliang, FAN Tingli, TANG Chao Rapid detection technology for surface water leakage in subway tunnel[J]. Bulletin of Surveying and Mapping, 2022, (9): 29- 33
|
|
|
[12] |
FLORED A, TITO H, CENTTY D. Comparison of hybrid recurrent neural networks for univariate time series forecasting [C]// Intelligent Systems and Applications . [S.l.]: Springer, 2021: 375–87.
|
|
|
[13] |
FANG K, KIFER D, LAWSON K, et al The data synergy effects of time‐series deep learning models in hydrology[J]. Water Resources Research, 2022, 58 (4): 1- 18
|
|
|
[14] |
XUE Y G, ZHANG X, LI S, et al Analysis of factors influencing tunnel deformation in loess deposits by data mining: a deformation prediction model[J]. Engineering Geology, 2018, 232: 94- 103
doi: 10.1016/j.enggeo.2017.11.014
|
|
|
[15] |
HE Y, YAN H, YANG W, et al Time-series analysis and prediction of surface deformation in the Jinchuan Mining area, Gansu province, by using InSAR and CNN–PhLSTM network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 6732- 6751
doi: 10.1109/JSTARS.2022.3198728
|
|
|
[16] |
QIU D W, WANG T, YE Q, et al A deformation prediction approach for supertall building using sensor monitoring system[J]. Journal of Sensors, 2019, 2019: 9283584
|
|
|
[17] |
YANG B, YIN K, LACASSE S, et al Time series analysis and long short-term memory neural network to predict landslide displacement[J]. Landslides, 2019, 16: 677- 694
doi: 10.1007/s10346-018-01127-x
|
|
|
[18] |
甘文娟, 陈永红, 韩静, 等 基于正交参数优化的LSTM结构变形预测模型[J]. 计算机系统应用, 2020, 29 (9): 212- 218 GAN Wenjuan, CHEN Yonghong, HAN Jing, et al Structure deformation prediction model based on LSTM and orthogonal parameter optimization[J]. Computer Systems and Applications, 2020, 29 (9): 212- 218
|
|
|
[19] |
韩宇, 李剑, 马慧宇, 等 基于CNN-LSTM的桥梁结构损伤诊断方法[J]. 国外电子测量技术, 2021, 40 (7): 1- 6 HAN Yu, LI Jian, MA Huiyu, et al Bridge structural damage diagnosis method based on CNN-LSTM[J]. Foreign Electronic Measurement Technology, 2021, 40 (7): 1- 6
|
|
|
[20] |
胡衍坤, 王宁, 刘枢, 等 时间序列模型和LSTM模型在水质预测中的应用研究[J]. 小型微型计算机系统, 2021, 42 (8): 1569- 1573 HU Yankun, WANG Ning, LIU Shu, et al Research on application of time series model and LSTM model in water quality prediction[J]. Journal of Chinese Computer Systems, 2021, 42 (8): 1569- 1573
|
|
|
[21] |
BAI L H, XU H Accurate estimation of tidal level using bidirectional long short-term memory recurrent neural network[J]. Ocean Engineering, 2021, 235: 108765
doi: 10.1016/j.oceaneng.2021.108765
|
|
|
[22] |
LUO X L, GAN W, WANG L, et al A deep learning prediction model for structural deformation based on temporal convolutional networks[J]. Computational Intelligence and Neuroscience, 2021, 2021: 8829639
|
|
|
[23] |
王亚飞, 韩静, 郭凰, 等 基于Bi-LSTM的结构变形预测[J]. 计算机系统应用, 2021, 30 (11): 304- 309 WANG Yafei, HAN Jing, GUO Huang, et al Prediction of structural deformation based on Bi-LSTM[J]. Computer Systems and Applications, 2021, 30 (11): 304- 309
|
|
|
[24] |
LUO J, ZHANG X Convolutional neural network based on attention mechanism and Bi-LSTM for bearing remaining life prediction[J]. Applied Intelligence, 2022, 52: 1076- 1091
doi: 10.1007/s10489-021-02503-2
|
|
|
[25] |
张羽飞, 孟凡勇, 王永千, 等 基于改进型LSTM的电力设备温度预测方法研究[J]. 电子测量与仪器学报, 2021, 35 (12): 167- 173 ZAHNG Yufei, MENG Feiyong, WANG Yongqian, et al Research on temperature prediction method of power equipment based on improved LSTM[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35 (12): 167- 173
|
|
|
[26] |
孙曙光, 张婷婷, 王景芹, 等 基于连续小波变换和MTL-SEResNet的断路器故障程度评估[J]. 仪器仪表学报, 2022, 43 (6): 162- 173 SUN Shuguang, ZHANG Tingting, WANG Jingqing, et al Fault degree evaluation of circuit breakers based on continuous wavelet transform and MTL-SEResNet[J]. Chinese Journal of Scientific Instrument, 2022, 43 (6): 162- 173
|
|
|
[27] |
CHO K, VAN MERRÌËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation [C]// 2014 Conference on Empirical Methods in Natural Language Processing . Doha: Association for Computational Linguistics, 2014: 1724–1734.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|