Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (3): 462-475    DOI: 10.3785/j.issn.1008-973X.2022.03.005
    
Review of CO2 direct air capture adsorbents
Tao WANG(),Hao DONG,Cheng-long HOU,Xin-ru WANG
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1561KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The research progress of direct air capture CO2 adsorbents was reviewed. The advantages and disadvantages of alkali/alkaline metal based adsorbents, metal organic framework adsorbents, amine loaded adsorbents and moisture swing adsorbents were compared. Meanwhile, the properties of adsorbents from the aspects of adsorption capacity and amine efficiency, kinetics and supporters, regeneration mode and energy consumption, thermal stability and resistance to degradation were evaluated. Additionally, the related engineering demonstration projects and economic evaluation were briefly discussed. Finally, the problems existing in the current research were summarized, and the future research direction was prospected.



Key wordsdirect air capture      CO2 capture      adsorbents      adsorption capacity      moisture swing adsorption     
Received: 14 July 2021      Published: 29 March 2022
CLC:  X 511  
Fund:  国家自然科学基金资助项目(51676169);浙江省自然科学基金杰青项目(LR19E060002)
Cite this article:

Tao WANG,Hao DONG,Cheng-long HOU,Xin-ru WANG. Review of CO2 direct air capture adsorbents. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 462-475.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.03.005     OR     https://www.zjujournals.com/eng/Y2022/V56/I3/462


直接空气捕集CO2吸附剂综述

综述直接空气捕集CO2吸附剂的研究进展,对比碱/碱土金属基吸附剂、金属有机框架吸附剂、负载胺基吸附剂、变湿吸附剂的优缺点,从吸附容量与胺效率、动力学与载体选择、再生方式与能耗、热稳定性与抗降解等方面对吸附剂性能进行评估. 简要叙述相关工程示范项目和技术经济性;总结研究中存在的问题,展望未来的研究方向.


关键词: 直接空气捕集,  CO2捕集,  吸附剂,  吸附性能,  变湿吸附 
名称 技术类型 技术成熟度 碳减排潜力 /(Gt) c /($·t?1)
生物质能结合碳捕集与封存技术 技术 示范 100~1 170 15~85
直接空气捕集与封存 技术 示范 108~1 000 135~345
强化矿物风化 强化自然过程 基础研究 100~367 50~200
土地管理与生物炭生产 强化自然过程 早期应用 78~1 468 30~120
海洋施肥与碱化 强化自然过程 技术研究 55~1 027
植树造林与再造林 自然过程 早期应用 80~260 5~50
Tab.1 Major negative carbon emission technologies
Fig.1 Theoretical free energy requirements for separating CO2 from air
Fig.2 Porous carrier used to load amine
Fig.3 Schematic of sorbent side mass transfer
Fig.4 Direct air capture process based on temperature-vacuum swing adsorption
Fig.5 Principle of moisture swing adsorption
Fig.6 Reaction path of CO2 moisture swing adsorption
Fig.7 Preparation of quaternary ammonium functionalized mesoporous adsorbents
Fig.8 Capacity comparison of solid adsorption materials for direct air capture
研究机构 地点 年份 规模 循环过程 吸附/吸收剂 捕集量 EDAC/
(GJ·t?1)
c/
($·t?1
Carbon Engineering[62] 加拿大 2015 中试试点 TSA 高温溶液吸收(KOH) 1 t/d 10
Carbon Engineering[62] 加拿大 2017 中试试点 TSA 高温溶液吸收(KOH) 捕获的CO2用于生产液体燃料,产量为1桶/d
Carbon Engineering[62] 加拿大 2023 (预计) 商业工厂 TSA 1 Mt/a 35 $/t用于提高石油采收率,
50 $/t用于封存
特温特大学 荷兰 2019 样机 TSA 商业胺基聚合物LewatitVPOC1065 0.004 t/d 2.1~4.5 150~200
Climeworks[63-64] 瑞士 2011 样机 TVSA 氨丙基嫁接NFC 2.47 t/d 92
Climeworks[63-64] 德国 2014 中试试点 TVSA 固体胺 80%捕获的CO2转化合成柴油
Climeworks[63-64] 瑞士 2017 商业装置 TVSA 900 t/a
Oy Hydrocell 芬兰 2018 小试装置 TVSA 氨丙基嫁接NFC 0.003 8 t/d 92
Carbfix 冰岛 2017 商业工厂 TVSA 世界上最大DAC/增强风化耦合系统
Climeworks + Carbfix 冰岛 2022 (预计) 商业工厂 TVSA 4 000 t/a
渥太华大学、
莫纳什大学[65-66]
澳大利亚 2020 样机 TVSA MOF/聚合物纳米复合物涂覆 0.001 t/d 5.76 35~350
Global Thermostat、
佐治亚理工学院[67]
美国 2018 商业工厂 S-TSA 胺基蜂窝陶瓷、MOF 10.96 t/d 5.83~7.9 60~190
苏黎世联邦理工学院、
莫纳什大学、上海交通大学
2020 实验室 S-TVSA 固态胺 2.3~7.6
哥伦比亚大学、
亚利桑那州立大学、浙江大学
样机 MSA 阴离子交换树脂 121.3
Tab.2 Direct air capture demonstration projects
Fig.9 Direct air capture demonstration devices or working principle diagram of partial company
Fig.10 Cost comparison of direct air capture
[1]   SIEGMUND P, ABERMANN J, BADDOUR O, et al. The global climate in 2015–2019 [R]. Geneva: World Meteorological Organization, 2020.
[2]   MASSON D V, ZHAI P, PÖRTNER H O, et al. An IPCC special report on the impacts of global warming of 1.5 ℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [R]. Geneva: Intergovernmental Panel on Climate Change, 2018.
[3]   FRIEDLINGSTEIN P, O'SULLIVAN M, JONES M W, et al Global carbon budget 2020[J]. Earth System Science Data, 2020, 12 (4): 3269- 3340
doi: 10.5194/essd-12-3269-2020
[4]   中华人民共和国国务院新闻办公室. 政府白皮书: 新时代的中国能源发展[R/OL]. (2020-12-21)[2021-03-01]. http://www.gov.cn/zhengce/2020-12/21/content_5571916.htm
[5]   International Energy Agency. Energy technology perspectives 2020 [R]. Paris: International Energy Agency, 2020.
[6]   MINX J C, LAMB W F, CALLAGHAN M W, et al Negative emissions—part 1: research landscape and synthesis[J]. Environmental Research Letters, 2018, 13 (6): 063001
doi: 10.1088/1748-9326/aabf9b
[7]   FUSS S, LAMB W F, CALLAGHAN M W, et al Negative emissions—part 2: costs, potentials and side effects[J]. Environmental Research Letters, 2018, 13 (6): 063002
doi: 10.1088/1748-9326/aabf9f
[8]   LACKNER K S. Capture of carbon dioxide from ambient air[J]. The European Physical Journal Special Topics, 2009, 176: 93- 106
doi: 10.1140/epjst/e2009-01150-3
[9]   KEITH D W Why capture CO2 from the atmosphere? [J]. Science, 2009, 325 (5948): 1654- 1655
doi: 10.1126/science.1175680
[10]   JONES C W CO2 capture from dilute gases as a component of modern global carbon management [J]. Annual Review of Chemical and Biomolecular Engineering, 2011, 2 (1): 31- 52
doi: 10.1146/annurev-chembioeng-061010-114252
[11]   ROCHELLE G T Amine scrubbing for CO2 capture [J]. Science, 2009, 325 (5948): 1652- 1654
doi: 10.1126/science.1176731
[12]   KIANI A, JIANG K, FERON P Techno-economic assessment for CO2 capture from air using a conventional liquid-based absorption process [J]. Frontiers in Energy Research, 2020, 8 (92): 1- 13
[13]   SHI X, XIAO H, AZARABADI H, et al Sorbents for the direct capture of CO2 from ambient air [J]. Angewandte Chemie International Edition, 2020, 59 (18): 6984- 7006
doi: 10.1002/anie.201906756
[14]   NIKULSHINA V, GáLVEZ M E, STEINFELD A Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2–CaCO3–CaO solar thermochemical cycle [J]. Chemical Engineering Journal, 2007, 129 (1/3): 75- 83
[15]   NIKULSHINA V, AYESA N, GáLVEZ M E, et al Feasibility of Na-based thermochemical cycles for the capture of CO2 from air: thermodynamic and thermogravimetric analyses [J]. Chemical Engineering Journal, 2008, 140 (1/3): 62- 70
[16]   VESELOVSKAYA J V, DEREVSCHIKOV V S, KARDASH T Y, et al Direct CO2 capture from ambient air using K2CO3/Al2O3 composite sorbent [J]. International Journal of Greenhouse Gas Control, 2013, 17: 332- 340
doi: 10.1016/j.ijggc.2013.05.006
[17]   VESELOVSKAYA J V, DEREVSCHIKOV V S, SHALYGIN A S, et al K2CO3-containing composite sorbents based on a ZrO2 aerogel for reversible CO2 capture from ambient air [J]. Microporous and Mesoporous Materials, 2021, 310: 110624
doi: 10.1016/j.micromeso.2020.110624
[18]   D'ALESSANDRO D M, SMIT B, LONG J R Carbon dioxide capture: prospects for new materials[J]. Angewandte Chemie International Edition, 2010, 49 (35): 6058- 6082
doi: 10.1002/anie.201000431
[19]   KUMAR A, MADDEN D G, LUSI M, et al Direct air capture of CO2 by physisorbent materials [J]. Angewandte Chemie International Edition, 2015, 54 (48): 14372- 14377
doi: 10.1002/anie.201506952
[20]   MADDEN D G, SCOTT H S, KUMAR A, et al Flue-gas and direct-air capture of CO2 by porous metal-organic materials [J]. Philosophical Transactions of The Royal Society A, 2017, 375 (2084): 1- 11
[21]   MCDONALD T M, LEE W R, MASON J A, et al Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc) [J]. Journal of the American Chemical Society, 2012, 134 (16): 7056- 7065
doi: 10.1021/ja300034j
[22]   LEE W R, HWANG S Y, RYU D W, et al Diamine-functionalized metal–organic framework: exceptionally high CO2 capacities from ambient air and flue gas, ultrafast CO2 uptake rate, and adsorption mechanism [J]. Energy and Environmental Science, 2014, 7 (2): 744- 751
doi: 10.1039/C3EE42328J
[23]   GUO M, WU H, LV L, et al A Highly efficient and stable composite of polyacrylate and metal-organic framework prepared by interface engineering for direct air capture[J]. Applied Materials and Interfaces, 2021, 13 (18): 21775- 21785
doi: 10.1021/acsami.1c03661
[24]   BELMABKHOUT Y, SERNA-GUERRERO R, SAYARI A Adsorption of CO2-containing gas mixtures over amine-bearing pore-expanded MCM-41 silica: application for gas purification [J]. Industrial and Engineering Chemistry Research, 2010, 49 (1): 359- 365
doi: 10.1021/ie900837t
[25]   DIDAS S A, CHOI S, CHAIKITTISILP W, et al Amine-oxide hybrid materials for CO2 capture from ambient air [J]. Accounts of Chemical Research, 2015, 48 (10): 2680- 2687
doi: 10.1021/acs.accounts.5b00284
[26]   SANZ-PéREZ E S, MURDOCK C R, DIDAS S A, et al Direct capture of CO2 from ambient air [J]. Chemical Reviews, 2016, 116 (19): 11840- 11876
doi: 10.1021/acs.chemrev.6b00173
[27]   ZHANG H, GOEPPERT A, PRAKASH G K S, et al Applicability of linear polyethylenimine supported on nano-silica for the adsorption of CO2 from various sources including dry air [J]. RSC Advances, 2015, 5 (65): 52550- 52562
doi: 10.1039/C5RA05428A
[28]   RIM G, FERIC T G, MOORE T, et al Solvent impregnated polymers loaded with liquid-like nanoparticle organic hybrid materials for enhanced kinetics of direct air capture and point source CO2 capture [J]. Advanced Functional Materials, 2021, 31 (21): 2010047
doi: 10.1002/adfm.202010047
[29]   HOLEWINSKI A, SAKWA-NOVAK M A, CARRILLO J Y, et al Aminopolymer mobility and support interactions in silica-PEI Composites for CO2 capture applications: a quasielastic neutron scattering study [J]. The Journal of Physical Chemistry B, 2017, 121 (27): 6721- 6731
doi: 10.1021/acs.jpcb.7b04106
[30]   CHOI S, DRESE J H, EISENBERGER P M, et al Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air [J]. Environmental Science and Technology, 2011, 45 (6): 2420- 2427
doi: 10.1021/es102797w
[31]   LIU F Q, WANG L, HUANG Z G, et al Amine-tethered adsorbents based on three-dimensional macroporous silica for CO2 capture from simulated flue gas and air [J]. ACS Applied Material and Interfaces, 2014, 6 (6): 4371- 4381
doi: 10.1021/am500089g
[32]   GOEPPERT A, CZAUN M, MAY R B, et al Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent[J]. Journal of the American Chemical Society, 2011, 133 (50): 20164- 20167
doi: 10.1021/ja2100005
[33]   WANG J, HUANG H, WANG M, et al Direct capture of low-concentration CO2 on mesoporous carbon-supported solid amine adsorbents at ambient temperature [J]. Industrial and Engineering Chemistry Research, 2015, 54 (19): 5319- 5327
doi: 10.1021/acs.iecr.5b01060
[34]   ZHU X, GE T, YANG F, et al Efficient CO2 capture from ambient air with amine-functionalized Mg–Al mixed metal oxides [J]. Journal of Materials Chemistry A, 2020, 8 (32): 16421- 16428
doi: 10.1039/D0TA05079B
[35]   LIU L, CHEN J, TAO L, et al Aminopolymer confined in ethane-silica nanotubes for CO2 capture from ambient air [J]. ChemNanoMat, 2020, 6 (7): 1096- 1103
doi: 10.1002/cnma.201900742
[36]   KWON H T, SAKWA-NOVAK M A, PANG S H, et al Aminopolymer-impregnated hierarchical silica structures: unexpected equivalent CO2 uptake under simulated air capture and flue gas capture conditions [J]. Chemistry of Materials, 2019, 31 (14): 5229- 5237
doi: 10.1021/acs.chemmater.9b01474
[37]   CHEN Z, DENG S, WEI H, et al Polyethylenimine-impregnated resin for high CO2 adsorption: an efficient adsorbent for CO2 capture from simulated flue gas and ambient air [J]. ACS Applied Material and Interfaces, 2013, 5 (15): 6937- 6945
[38]   SEHAQUI H, GALVEZ M E, BECATINNI V, et al Fast and reversible direct CO2 capture from air onto all-polymer nanofibrillated cellulose-polyethylenimine foams [J]. Environmental Science and Technology, 2015, 49 (5): 3167- 3174
doi: 10.1021/es504396v
[39]   WANG T, LIU J, HUANG H, et al Preparation and kinetics of a heterogeneous sorbent for CO2 capture from the atmosphere [J]. Chemical Engineering Journal, 2016, 284: 679- 686
doi: 10.1016/j.cej.2015.09.009
[40]   刘军. 基于湿法再生的CO2吸附材料性能及应用研究[D]. 杭州: 浙江大学, 2016: 46.
LIU Jun. Research on performance of CO2 adsorption materials and utilization based on moisture swing technology [D]. Hangzhou: Zhejiang University, 2016
[41]   吴禹松. 用于空气二氧化碳捕集的多孔树脂吸附剂成型及性能研究[D]. 杭州: 浙江大学, 2020: 46.
WU Yu-song. Research on formation and performance of porous resin adsorbent for direct air capture of CO2 [D]. Hangzhou: Zhejiang University, 2020.
[42]   孙轶敏, 王涛, 刘军, 等 湿法再生吸附剂制备及用于大气CO2的直接捕集 [J]. 环境工程学报, 2014, 8 (4): 1567- 1572
SUN Yi-min, WANG Tao, LIU Jun, et al Preparation of moisture swing adsorbent and performance test for CO2 capture from ambient air [J]. Chinese Journal of Environmental Engineering, 2014, 8 (4): 1567- 1572
[43]   徐锶瑶, 侯成龙, 王涛 季铵型变湿再生材料CO2吸附热量迁移研究 [J]. 能源工程, 2021, (1): 54- 62
XU Si-yao, HOU Cheng-long, WANG Tao The heat transfer of quaternary ammonium resin materials in the adsorption process[J]. Energy Engineering, 2021, (1): 54- 62
[44]   ZHAO R, LIU L, ZHAO L, et al Thermodynamic exploration of temperature vacuum swing adsorption for direct air capture of carbon dioxide in buildings[J]. Energy Conversion and Management, 2019, 183: 418- 426
doi: 10.1016/j.enconman.2019.01.009
[45]   ZHU X, GE T, YANG F, et al Design of steam-assisted temperature vacuum-swing adsorption processes for efficient CO2 capture from ambient air [J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110651
doi: 10.1016/j.rser.2020.110651
[46]   RAHIMI, M, CATALINI G, PUCCINI M, et al Bench-scale demonstration of CO2 capture with an electrochemically driven proton concentration process [J]. RSC Advances, 2020, 10 (29): 16832- 16843
doi: 10.1039/D0RA02450C
[47]   STAMPI-BOMBELLI V, SPEK M, MAZZOTTI M Analysis of direct capture of CO2 from ambient air via steam-assisted temperature-vacuum swing adsorption [J]. Adsorption, 2020, 26 (7): 1183- 1197
doi: 10.1007/s10450-020-00249-w
[48]   SINHA A, DARUNTE L A, JONES C W, et al Systems design and economic analysis of direct air capture of CO2 through temperature vacuum swing adsorption using MIL-101(Cr)-PEI-800 and mmen-Mg2(dobpdc) MOF adsorbents [J]. Industrial and Engineering Chemistry Research, 2017, 56 (3): 750- 764
doi: 10.1021/acs.iecr.6b03887
[49]   CHAIKITTISILP W, KIM H-J, JONES C W Mesoporous alumina-supported amines as potential steam-stable adsorbents for capturing CO2 from simulated flue gas and ambient air [J]. Energy and Fuels, 2011, 25 (11): 5528- 5537
doi: 10.1021/ef201224v
[50]   SAKWA-NOVAK M A, JONES C W Steam induced structural changes of a poly(ethylenimine) impregnated γ-alumina sorbent for CO2 extraction from ambient air [J]. ACS Applied Materials and Interfaces, 2014, 6 (12): 9245- 9255
doi: 10.1021/am501500q
[51]   WANG T, LACKNER K S, WRIGHT A Moisture swing sorbent for carbon dioxide capture from ambient air[J]. Environmental Science and Technology, 2011, 45 (15): 6670- 6675
doi: 10.1021/es201180v
[52]   QUINN R, APPLEBY J B, PEZ G P Salt hydrates: new reversible absorbents for carbon dioxide[J]. Journal of the American Chemical Society, 1995, 117 (1): 329- 335
doi: 10.1021/ja00106a035
[53]   WANG T, GE K, CHEN K, et al Theoretical studies on CO2 capture behavior of quaternary ammonium-based polymeric ionic liquids [J]. Physical Chemistry Chemical Physics, 2016, 18 (18): 13084- 13091
doi: 10.1039/C5CP07229H
[54]   WANG T, HOU C, GE K, et al Spontaneous cooling absorption of CO2 by a polymeric ionic liquid for direct air capture [J]. Journal of Physical Chemistry Letters, 2017, 8 (1): 3986- 3990
[55]   WANG T, LIU J, LACKNER K S, et al Characterization of kinetic limitations to atmospheric CO2 capture by solid sorbent [J]. Greenhouse Gases: Science and Technology, 2016, 6 (1): 138- 149
doi: 10.1002/ghg.1535
[56]   SHI X, LI Q, WANG T, et al Kinetic analysis of an anion exchange absorbent for CO2 capture from ambient air [J]. PLoS One, 2017, 12 (6): 1- 12
[57]   ARMSTRONG M, SHI X, SHAN B, et al Rapid CO2 capture from ambient air by sorbent-containing porous electrospun fibers made with the solvothermal polymer additive removal technique [J]. AIChE Journal, 2019, 65 (1): 214- 220
doi: 10.1002/aic.16418
[58]   WU D C, XU F, SUN B, et al Design and preparation of porous polymers[J]. Chemical Reviews, 2012, 112 (7): 3959- 4015
doi: 10.1021/cr200440z
[59]   WANG T, WANG X R, HOU C L, et al Quaternary functionalized mesoporous adsorbents for ultra-high kinetics of CO2 capture from air [J]. Scientific Reports, 2020, 10 (1): 21429
doi: 10.1038/s41598-020-77477-1
[60]   SONG J, LIU J, ZHAO W, et al Quaternized chitosan/PVA aerogels for reversible CO2 capture from ambient air [J]. Industrial and Engineering Chemistry Research, 2018, 57 (14): 4941- 4948
doi: 10.1021/acs.iecr.8b00064
[61]   HOU C L, WU Y S, WANG T, et al Preparation of quaternized bamboo cellulose and its implication in direct air capture of CO2[J]. Energy Fuels, 2019, 33 (3): 1745- 1752
doi: 10.1021/acs.energyfuels.8b02821
[62]   KEITH D W, HOLMES G, ST ANGELO D, et al A process for capturing CO2 from the atmosphere [J]. Joule, 2018, 2 (10): 1573- 1594
[63]   GEBALD C, WURZBACHER J A, TINGAUT P, et al Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air [J]. Environmental Science and Technology, 2011, 45 (20): 9101- 9108
doi: 10.1021/es202223p
[64]   VáZQUEZ F V, KOPONEN J, RUUSKANEN V, et al Power-to-X technology using renewable electricity and carbon dioxide from ambient air: SOLETAIR proof-of-concept and improved process concept[J]. Journal of CO2 Utilization , 2018, 28: 235- 246
doi: 10.1016/j.jcou.2018.09.026
[65]   SADIQ M M, BATTEN M P, MULET X, et al A pilot-scale demonstration of mobile direct air capture using metal-organic frameworks[J]. Advanced Sustainable Systems, 2020, 4 (12): 2000101
doi: 10.1002/adsu.202000101
[66]   WIJESIRI R P, KNOWLES G P, YEASMIN H, et al Desorption process for capturing CO2 from air with supported amine sorbent [J]. Industrial and Engineering Chemistry Research, 2019, 58 (34): 15606- 15618
doi: 10.1021/acs.iecr.9b03140
[67]   CHOI S, DRESE J, EISENBERGER P, et al. A new paradigm of anthropogenic CO2 reduction: adsorptive fixation of CO2 from the ambient air as a carbon negative technology [C]// 2009 AIChE Annual Meeting. Nashville: [s. n.], 2009: 385-390.
[68]   YU Q, BRILMAN W A radial flow contactor for ambient air CO2 capture [J]. Applied Sciences, 2020, 10 (3): 1080
doi: 10.3390/app10031080
[69]   HOU C L, WU Y S, JIAO Y Z, et al Integrated direct air capture and CO2 utilization of gas fertilizer based on moisture swing adsorption [J]. Journal of Zhejiang University: Science A, 2017, 18 (10): 819- 830
doi: 10.1631/jzus.A1700351
[70]   DAGGASH H A, PATZSCHKE C F, HEUBERGER C F, et al Closing the carbon cycle to maximise climate change mitigation: power-to-methanol vs. power-to-direct air capture[J]. Sustainable Energy and Fuels, 2018, 2 (6): 1153- 1169
doi: 10.1039/C8SE00061A
[71]   KREKEL D, SAMSUN R C, PETERS R, et al The separation of CO2 from ambient air: a techno-economic assessment [J]. Applied Energy, 2018, 218: 361- 381
doi: 10.1016/j.apenergy.2018.02.144
[72]   FASIHI M, EFIMOVA O, BREYER C Techno-economic assessment of CO2 direct air capture plants [J]. Journal of Cleaner Production, 2019, 224: 957- 980
doi: 10.1016/j.jclepro.2019.03.086
[73]   SAGUES W J, PARK S, JAMEEL H, et al Enhanced carbon dioxide removal from coupled direct air capture-bioenergy systems[J]. Sustainable Energy and Fuels, 2019, 3 (11): 3135- 3146
doi: 10.1039/C9SE00384C
[74]   WIJESIRI R P, KNOWLES G P, YEASMIN H, et al Technoeconomic evaluation of a process capturing CO2 directly from air [J]. Processes, 2019, 7 (8): 503
doi: 10.3390/pr7080503
[75]   ABANADES J C, CRIADO Y A, FERNáNDEZ J R An air CO2 capture system based on the passive carbonation of large Ca(OH)2 structures [J]. Sustainable Energy and Fuels, 2020, 4 (7): 3409- 3417
doi: 10.1039/D0SE00094A
[76]   MCQUEEN N, PSARRAS P, PILORGE H, et al Cost analysis of direct air capture and sequestration coupled to low-carbon thermal energy in the united states[J]. Environmental Science and Technology, 2020, 54 (12): 7542- 7551
doi: 10.1021/acs.est.0c00476
[77]   VAN DER GIESEN C, MEINRENKEN C J, KLEIJN R, et al A life cycle assessment case study of coal-fired electricity generation with humidity swing direct air capture of CO2 versus MEA-based postcombustion capture [J]. Environmental Science and Technology, 2017, 51 (2): 1024- 1034
[78]   GENG Y, LI C, CAO Y, et al Cost analysis of air capture driven by wind energy under different scenarios[J]. Journal of Modern Power Systems and Clean Energy, 2015, 4 (2): 275- 281
[79]   ZEMAN F Reducing the cost of Ca-based direct air capture of CO2[J]. Environmental Science and Technology, 2014, 48 (19): 11730- 11735
[80]   SOCOLOW R, DESMOND M, AINES R, et al. Direct air capture of CO2 with chemicals: a technology assessment for the aps panel on public affairs [R]. [S.l.]: American Physical Society, 2011.
[81]   KULKARNI A R, SHOLL D S Analysis of equilibrium-based TSA processes for direct capture of CO2 from air [J]. Industrial and Engineering Chemistry Research, 2012, 51 (25): 8631- 8645
doi: 10.1021/ie300691c
[82]   DEUTZ S, BARDOW A Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption[J]. Nature Energy, 2021, 6 (2): 203- 213
doi: 10.1038/s41560-020-00771-9
[1] YANG Jin-yao, FANG Meng-xiang, CEN Qi-gang, WANG Tao, HE Hui. Simulation of capturing carbon dioxide from flue gas by activated carbon[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2142-2149.