Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (3): 476-484    DOI: 10.3785/j.issn.1008-973X.2022.03.006
    
Photocatalytic performance of ZnO/g-C3N4 composite photocatalysts in microfluidic reactors
Hua-zhen LIU(),Hao ZHOU*()
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1660KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The ZnO/g-C3N4 composite photocatalysts with different mass fractions of ZnO were synthesized by a simple impregnation method. The structure, morphology, chemical compositions and optical properties of the samples were analyzed. The as-prepared samples were fixed to microfluidic reactors, respectively. The photocatalytic performance of these reactors was evaluated by the degradation of different dyes (methylene blue, neutral red, malachite green, and rhodamine B) under visible light. The characterization indicated that there was an interaction between ZnO and g-C3N4 in the as-prepared composite. And the composite could make good use of visible light. Also, compared with g-C3N4, the recombination of photogenerated electron-hole pairs in the composite was obviously inhibited. The results of photocatalytic experiments displayed that 6% ZnO/g-C3N4 exhibited the best photocatalytic performance compared to other mass fractions of ZnO. When the light intensity was 60 klx and the liquid flow rate was 20 μL/min, the degradation efficiency of rhodamine B solution reached 98.9%. The photocatalytic degradation of methylene blue by multiple cycle tests was also studied, indicating the sample's stability and reliability when conducting photocatalytic degradation experiments in microfluidic reactors.



Key wordsZnO/g-C3N4 composite      photocatalytic technology      microfluidic reactor      degradation of dye     
Received: 26 March 2021      Published: 29 March 2022
CLC:  X 703  
Fund:  国家自然科学基金创新研究群体项目(51621005)
Corresponding Authors: Hao ZHOU     E-mail: 21827029@zju.edu.cn;zhouhao@zju.edu.cn
Cite this article:

Hua-zhen LIU,Hao ZHOU. Photocatalytic performance of ZnO/g-C3N4 composite photocatalysts in microfluidic reactors. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 476-484.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.03.006     OR     https://www.zjujournals.com/eng/Y2022/V56/I3/476


ZnO/g-C3N4光催化剂在微流控芯片中的光催化性能

采用浸渍法合成ZnO质量分数不同的ZnO/g-C3N4复合光催化剂,分析样品的结构、形态、化学组成和光学性能等. 将制备好的样品固定到微流控芯片中,降解不同的染料(亚甲基蓝、中性红、孔雀石绿、罗丹明B),评价样品在可见光下的光催化性能. 样品的表征结果表明,在ZnO/g-C3N4复合物中,ZnO、g-C3N4间存在相互作用,ZnO/g-C3N4复合物对可见光的利用更为充分;与g-C3N4相比,在ZnO/g-C3N4复合物中光生电子-空穴对的复合明显被抑制. 光催化实验结果表明,6 % ZnO/g-C3N4具有最佳光催化性能,在光照强度为60 klx,液体流速为20 μL/min时,其对罗丹明B溶液的降解效率为98.9%.多次循环后的光催化降解亚甲基蓝性能研究表明,样品在微流控芯片中进行光催化降解实验具有稳定性和可靠性.


关键词: ZnO/g-C3N4复合材料,  光催化技术,  微流控芯片,  降解染料 
Fig.1 Photo of microfluidic reactor and design of microchannels
Fig.2 Fabrication process of microfluidic reactor
Fig.3 Schematic diagram of experimental system
Fig.4 XRD patterns of prepared CN, ZnO, ZnO/CN composites
Fig.5 SEM images of CN, ZnO and 6% ZnO/CN and EDS image of 6% ZnO/CN
Fig.6 FT-IR spectra of CN, ZnO and 6% ZnO/CN photocatalysts
Fig.7 High resolution XPS spectra of CN, ZnO and 6% ZnO/CN
Fig.8 Optical properties analysis of CN, ZnO and 6% ZnO/CN composites
Fig.9 PL spectra of CN, ZnO/CN composites excited at 365 nm
Fig.10 Effect of flow rate on photocatalytic degradation efficiency of MB solution (light intensity: 50 klx)
Fig.11 Effect of light intensity on photocatalytic degradation efficiency of MB solution (flow rate: 20 μL/min)
Fig.12 Cycle runs of photocatalytic degradation MB solution experiment (light intensity: 60 klx, flow rate: 20 μL/min)
Fig.13 Photocatalytic degradation of NR, MG and MB solution with different photocatalysts (light intensity: 60 klx, flow rate: 20 μL/min)
[1]   LEWIS N S, CRABTREE G, NOZIK A J, et al. Basic research needs for solar energy utilization. Report of the basic energy sciences workshop on solar energy utilization, April 18-21, 2005 [R/OL]. (2005-04-21)[2021-03-07].https://www.osti.gov/biblio/899136-uy8Fy6.
[2]   BALZANI V, CREDI A, VENTURI M Photochemical conversion of solar energy[J]. ChemSusChem: Chemistry and Sustainability Energy and Materials, 2008, 1 (1/2): 26- 58
[3]   TAKATA T, JIANG J, SAKATA Y, et al Photocatalytic water splitting with a quantum efficiency of almost unity[J]. Nature, 2020, 581 (7809): 411- 414
doi: 10.1038/s41586-020-2278-9
[4]   OLOWOYO J O, KUMAR M, JAIN S L, et al Reinforced photocatalytic reduction of CO2 to fuel by efficient S-TiO2: significance of sulfur doping [J]. International Journal of Hydrogen Energy, 2018, 43 (37): 17682- 17695
doi: 10.1016/j.ijhydene.2018.07.193
[5]   CHEN P, WANG H, LIU H, et al Directional electron delivery and enhanced reactants activation enable efficient photocatalytic air purification on amorphous carbon nitride co-functionalized with O/La[J]. Applied Catalysis B: Environmental, 2019, 242: 19- 30
doi: 10.1016/j.apcatb.2018.09.078
[6]   SERRá A, ZhANG Y, SEPúLVEDA B, et al Highly active ZnO-based biomimetic fern-like microleaves for photocatalytic water decontamination using sunlight[J]. Applied Catalysis B: Environmental, 2019, 248: 129- 146
doi: 10.1016/j.apcatb.2019.02.017
[7]   SAMPAIO M J, LIMA M J, BAPTISTA D L, et al Ag-loaded ZnO materials for photocatalytic water treatment[J]. Chemical Engineering Journal, 2017, 318: 95- 102
doi: 10.1016/j.cej.2016.05.105
[8]   SCARISOREANU M, ILIE A G, GONCEARENCO E, et al Ag, Au and Pt decorated TiO2 biocompatible nanospheres for UV and vis photocatalytic water treatment [J]. Applied Surface Science, 2020, 509: 145217
doi: 10.1016/j.apsusc.2019.145217
[9]   RAVICHANDRAN K, MOHAN R, SAKTHIVEL B, et al Enhancing the photocatalytic efficiency of sprayed ZnO thin films through double doping (Sn+F) and annealing under different ambiences[J]. Applied Surface Science, 2014, 321: 310- 317
doi: 10.1016/j.apsusc.2014.10.023
[10]   LEE K M, LAI C W, NGAI K S, et al Recent developments of zinc oxide based photocatalyst in water treatment technology: a review[J]. Water Research, 2016, 88: 428- 448
doi: 10.1016/j.watres.2015.09.045
[11]   SUN L, ZHAO X, JIA C J, et al Enhanced visible-light photocatalytic activity of g-C3N4-ZnWO4 by fabricating a heterojunction: investigation based on experimental and theoretical studies [J]. Journal of Materials Chemistry, 2012, 22 (44): 23428- 23438
doi: 10.1039/c2jm34965e
[12]   WANG X, MAEDA K, THOMAS A, et al A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8 (1): 76
doi: 10.1038/nmat2317
[13]   YAN S C, LI Z S, ZOU Z G Photodegradation performance of g-C3N4 fabricated by directly heating melamine [J]. Langmuir, 2009, 25 (17): 10397- 10401
doi: 10.1021/la900923z
[14]   MAO J, PENG T, ZHANG X, et al Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light [J]. Catalysis Science and Technology, 2013, 3 (5): 1253- 1260
doi: 10.1039/c3cy20822b
[15]   CAO S W, LIU X F, YUAN Y P, et al Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts [J]. Applied Catalysis B: Environmental, 2014, 147: 940- 946
doi: 10.1016/j.apcatb.2013.10.029
[16]   LIU Y, LIU H, ZHOU H, et al A Z-scheme mechanism of N-ZnO/g-C3N4 for enhanced H2 evolution and photocatalytic degradation [J]. Applied Surface Science, 2019, 466: 133- 140
doi: 10.1016/j.apsusc.2018.10.027
[17]   WANG Y, BAO S, LIU Y, et al Efficient photocatalytic reduction of Cr (VI) in aqueous solution over CoS2/g-C3N4-rGO nanocomposites under visible light [J]. Applied Surface Science, 2020, 510: 145495
doi: 10.1016/j.apsusc.2020.145495
[18]   LEBLEBICI M E, STEFANIDIS G D, VAN GERVEN T Comparison of photocatalytic space-time yields of 12 reactor designs for wastewater treatment[J]. Chemical Engineering and Processing: Process Intensification,, 2015, 97: 106- 111
[19]   DIJKSTRA M F J, PANNEMAN H J, WINKELMAN J G M, et al Modeling the photocatalytic degradation of formic acid in a reactor with immobilized catalyst[J]. Chemical Engineering Science,, 2002, 57 (22/23): 4895- 4907
[20]   WANG N, TAN F, WAN L, et al Microfluidic reactors for visible-light photocatalytic water purification assisted with thermolysis[J]. Biomicrofluidics, 2014, 8 (5): 054122
doi: 10.1063/1.4899883
[21]   LEI L, WANG N, ZHANG X M, et al Optofluidic planar reactors for photocatalytic water treatment using solar energy[J]. Biomicrofluidics, 2010, 4 (4): 043004
doi: 10.1063/1.3491471
[22]   WANG K, LI Q, LIU B, et al Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance [J]. Applied Catalysis B: Environmental, 2015, 176: 44- 52
[23]   LIAO W, WANG N, WANG T, et al Biomimetic microchannels of planar reactors for optimized photocatalytic efficiency of water purification[J]. Biomicrofluidics, 2016, 10 (1): 014123
doi: 10.1063/1.4942947
[24]   LI Y, LIU X, TAN L, et al Rapid sterilization and accelerated wound healing using Zn2+ and graphene oxide modified g-C3N4 under dual light irradiation [J]. Advanced Functional Materials, 2018, 28 (30): 1800299
doi: 10.1002/adfm.201800299
[25]   LI Y, ZHANG H, LIU P, et al Cross-linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity [J]. Small, 2013, 9 (19): 3336- 3344
[26]   GOETTMANN F, FISCHER A, ANTONIETTI M, et al Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel–Crafts reaction of benzene[J]. Angewandte Chemie: International Edition, 2006, 45 (27): 4467- 4471
doi: 10.1002/anie.200600412
[27]   CHAO J, CHEN Y, XING S, et al Facile fabrication of ZnO/C nanoporous fibers and ZnO hollow spheres for high performance gas sensor[J]. Sensors and Actuators B: Chemical, 2019, 298: 126927
doi: 10.1016/j.snb.2019.126927
[28]   WANG Y, SHI R, LIN J, et al Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4[J]. Energy and Environmental Science, 2011, 4 (8): 2922- 2929
doi: 10.1039/c0ee00825g
[29]   YU J, WANG K, XIAO W, et al Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4–Pt nanocomposite photocatalysts [J]. Physical Chemistry Chemical Physics, 2014, 16 (23): 11492- 11501
doi: 10.1039/c4cp00133h
[30]   ZOU J P, WANG L C, LUO J, et al Synthesis and efficient visible light photocatalytic H2 evolution of a metal-free g-C3N4/graphene quantum dots hybrid photocatalyst [J]. Applied Catalysis B: Environmental, 2016, 193: 103- 109
doi: 10.1016/j.apcatb.2016.04.017
[31]   XU M, HAN L, DONG S Facile fabrication of highly efficient g-C3N4/Ag2O heterostructured photocatalysts with enhanced visible-light photocatalytic activity [J]. ACS Applied Materials and Interfaces, 2013, 5 (23): 12533- 12540
doi: 10.1021/am4038307
[32]   LABHANE P K, HUSE V R, PATLE L B, et al Synthesis of Cu doped ZnO nanoparticles: crystallographic, optical, FTIR, morphological and photocatalytic study[J]. Journal of Materials Science and Chemical Engineering, 2015, 3 (7): 39
doi: 10.4236/msce.2015.37005
[33]   SHARMA D, RAJPUT J, KAITH B S, et al Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties[J]. Thin Solid Films, 2010, 519 (3): 1224- 1229
doi: 10.1016/j.tsf.2010.08.073
[34]   VAIANO V, MATARANGOLO M, MURCIA J J, et al Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag[J]. Applied Catalysis B: Environmental, 2018, 225: 197- 206
doi: 10.1016/j.apcatb.2017.11.075
[35]   CHIDHAMBARAM N, RAVICHANDRAN K Fabrication of ZnO/g-C3N4 nanocomposites for enhanced visible light driven photocatalytic activity [J]. Materials Research Express, 2017, 4 (7): 075037
doi: 10.1088/2053-1591/aa7abd
[1] LIU Nan, TENG Fu hua, LU Jian hai, DONG Shi bi, GU Zhen yu. Treatment of exhaust gas from spray paint process Using photocatalytic-absorption method[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 393-398.
[2] SHAO Wei-yun, YI Wen-tao, ZHOU Yong-chao, ZHANG Ping. Mechanism of lead (Pb2+) adsorption on natural clinoptilolite[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1173-1178.
[3] DENG Feng-xia, QIU Shan, YUE Xiu-li, XU Shan-wen, CHEN Cong. Advanced treatment of refinery wastewater by heterogeneous catalytic ozonation oxidation[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(3): 555-563.
[4] TANG Kai, JIA Jia, DENG Jing, SONG Ya-li, LI Qing-song. Influencing factors analysis of 17β-estradiol degradation in aqueous system by ultrasound and KMnO4 combined with ultrasound[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(6): 1132-1140.
[5] HU Kai, ZHAO Qing-liang, MIAO Li-juan, WANG Kun, QIU Wei. Influence of ultrasonically enhanced pretreatment on
characteristics and anaerobic digestion of waste activated sludge
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(8): 1463-1468.
[6] WU Qiong, HUA Tao, ZHOU Qi-xing, ZHANG Shu-guang. Treatment technique based on ecological safety for
mixed chemical industrial wastewater
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(8): 1469-1474.
[7] CHEN Xiao-guang, ZHENG Ping. Bed energy dissipation rate of super-high-rate anaerobic bioreactor[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(2): 358-363.