Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (11): 2188-2199    DOI: 10.3785/j.issn.1008-973X.2023.11.006
    
Compound operation scheduling optimization in four-way shuttle warehouse system
Li-li XU1(),Yan ZHAN1,*(),Jian-sha LU1,Yi-ding LANG2
1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
2. Ningbo Fujia Industrial Co. Ltd, Ningbo 330200, China
Download: HTML     PDF(1485KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The compound operation scheduling optimization in four-way shuttle warehouse system was studied to improve the efficiency of storage system operations. A mathematical model was established with the goal of minimizing inbound and outbound operation times to optimize the scheduling problem of the system. This model was based on the combined operation of a four-way shuttle and an elevator, and the collaborative operation characteristics in both horizontal and vertical directions were considered. Furthermore, the model was analyzed under various operating modes by examining the connection between the start and end operation times of the four-way shuttle and the elevator, as well as the starting operation tiers. The method based on the task classification was proposed to initialize the population of the genetic algorithm. The crossover and the mutation of the population were completed to solve the model, and then the task allocation and sequence of the system were optimized. Some experiments were conducted to verify the effectiveness of the improved genetic algorithm. The influence of the number of four-way shuttles on the operation time and system cost was analyzed, and the operation efficiencies of single and double elevators in the system were compared. The effectiveness of the genetic algorithm based on the task classification was verified, and the results showed that the operation efficiency was improved by at least 10.3%, by using the proposed algorithm.



Key wordsfour-way shuttle warehouse system      scheduling optimization      compound operation      task classification      genetic algorithm     
Received: 09 December 2022      Published: 11 December 2023
CLC:  TP 391  
Fund:  浙江省尖兵研发攻关计划资助项目(2023C01063);浙江省重点研发计划资助项目(2018C01003)
Corresponding Authors: Yan ZHAN     E-mail: 2111602062@zjut.edu.cn;yzhan@zjut.edu.cn
Cite this article:

Li-li XU,Yan ZHAN,Jian-sha LU,Yi-ding LANG. Compound operation scheduling optimization in four-way shuttle warehouse system. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2188-2199.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.11.006     OR     https://www.zjujournals.com/eng/Y2023/V57/I11/2188


四向穿梭车仓储系统复合作业调度优化

为了提高仓储系统作业效率,对四向穿梭车仓储系统复合作业开展调度优化研究. 在四向穿梭车和提升机采用复合作业完成任务的基础上,考虑设备在水平方向和垂直方向的协同作业特性. 通过四向穿梭车和提升机开始和结束作业时间以及开始作业层数之间的联系,在不同作业模式下进行讨论,从而构建以出入库作业时间最短为目标的数学模型. 提出基于任务分类的方法对遗传算法的种群进行初始化,随后在该方法的基础上完成种群的交叉和变异来求解模型,进而得出系统的最优任务分配及排序. 通过实例分析四向穿梭车数量及单双台提升机对系统作业效率和成本的影响,验证基于任务分类的遗传算法的有效性,结果表明该算法至少提高10.3%的作业效率.


关键词: 四向穿梭车仓储系统,  调度优化,  复合作业,  任务分类,  遗传算法 
Fig.1 Diagram of four-way shuttle warehouse system
Fig.2 Schematic diagram of compound operation path of four-way vehicle system
Fig.3 Diagram of idle load operation path completed by four-way shuttle under $ z(u) = z(v) $
Fig.4 Ptah diagram of two elevators
Fig.5 Flow chart of improved genetic algorithm
Fig.6 Chromosome Examples
Fig.7 Schematic diagram of chromosome crossing operation in first layer
序号 入库货位 序号 出库货位
1 (?10,4,3) 1 (7,19,2)
2 (?1,5,4) 2 (8,9,3)
3 (?8,7,2) 3 (8,3,3)
4 (?9,7,4) 4 (2,17,2)
5 (5,2,3) 5 (9,7,4)
6 (?7,7,1) 6 (6,10,4)
7 (10,7,4) 7 (?10,19,2)
8 (?4,12,3) 8 (2,7,2)
9 (4,8,5) 9 (?5,7,5)
10 (3,8,5) 10 (9,19,5)
11 (?9,17,4) 11 (?4,7,4)
12 (7,12,4) 12 (4,17,3)
13 (?7,3,5) 13 (10,8,1)
14 (2,7,1) 14 (?10,5,1)
15 (10,7,2) 15 (4,13,5)
16 (?5,15,5) 16 (?7,2,1)
17 (?1,7,3) 17 (6,7,4)
18 (?7,15,1) 18 (2,15,1)
19 (?7,7,3) 19 (4,14,1)
20 (2,7,4) 20 (8,4,2)
Tab.1 Inbound and outbound tasks list
编号 装载货位 编号 装载货位 编号 装载货位
1 (3, 3, 5) 9 (2, 6, 3) 17 (3, 17, 1)
2 (5, 7, 3) 10 (5, 6, 3) 18 (5, 2, 5)
3 (3, 16, 1) 11 (5, 2, 4) 19 (5, 3, 3)
4 (4, 2, 4) 12 (9, 9, 3) 20 (?10, 3, 4)
5 (1, 11, 3) 13 (?10, 2, 3) 21 (5, 2, 1)
6 (2, 14, 3) 14 (6, 17, 4) 22 (4, 7, 5)
7 (2, 13, 3) 15 (5, 2, 2) 23 (5, 5, 2)
8 (7, 7, 4) 16 (5, 3, 4) 24 (?4, 4, 4)
Tab.2 Loading position under initial status
m TZ/s TW/s TM/s TC/s
1 186.36 0 73.43 186.36
2 104.40 47.70 65.16 152.10
63.20 88.90
3 67.90 61.22 59.35 129.12
42.24 86.88
35.30 93.82
4 24.06 95.47 64.86 119.53
51.93 65.20
55.90 63.63
64.60 54.93
Tab.3 System operation time of IGA optimization under different number of four-way shuttle
Fig.8 Cost under different numbers of four-way shuttles
编号 作业顺序
1 3-6, 4-7,19-11,14-16,15-8,17-12
2 2-1,10-3,20-5,9-15,16-14,7-10
3 8-4,13-9,12-18,11-17,5-2,6-19,18-13
Tab.4 Sequence under number of four-way vehicles of three
no 算法 AVE/s δ/% VAR
20 IGA 188.12 11.9 4.60
GA 213.54 6.78
50 IGA 286.90 12.3 3.52
GA 327.31 4.38
70 IGA 416.67 16.3 5.57
GA 467.80 7.86
100 IGA 724.30 10.3 6.67
GA 787.20 9.65
200 IGA 2068.70 15.7 10.39
GA 2302.67 16.74
500 IGA 5643.20 17.0 14.60
GA 6096.10 19.30
Tab.5 Algorithm optimization results under different order sizes
Fig.9 Algorithm iteration diagram under order size of 500
Fig.10 System operation time optimized by algorithm under order size of 200
Fig.11 Completion time under kinds of elevators and order sizes
[1]   AZADEH K, DE KOSTER R, ROY D Robotized and automated warehouse systems: review and recent developments[J]. Transport Science, 2019, 53 (4): 917- 945
doi: 10.1287/trsc.2018.0873
[2]   ROY D, KRISHNAMURTHY A, HERAGU S, et al Queuing models to analyze dwell-point and cross-aisle location in autonomous vehicle-based warehouse systems[J]. European Journal of Operational Research, 2015, 242 (1): 72- 87
doi: 10.1016/j.ejor.2014.09.040
[3]   EKREN B Y A multi-objective optimisation study for the design of an AVS/RS warehouse[J]. International Journal of Production Research, 2021, 59 (4): 1107- 1126
doi: 10.1080/00207543.2020.1720927
[4]   WANG Y, LIU Z, HUANG K, et al Model and solution approaches for retrieval operations in a multi-tier shuttle warehouse system[J]. Computers Industrial Engineering, 2020, 141: 106283
doi: 10.1016/j.cie.2020.106283
[5]   CARLO H J, VIS I Sequencing dynamic storage systems with multiple lifts and shuttles[J]. International Journal of Production Economics, 2012, 140 (2): 844- 853
doi: 10.1016/j.ijpe.2012.06.035
[6]   汤洪涛, 程晓雅, 李修琳, 等 跨层跨巷道穿梭车仓储系统复合作业路径优化[J]. 计算机集成制造系统, 2022, 28 (6): 1888- 1902
TANG Hong-tao, CHENG Xiao-ya, LI Xiu-lin, et al Optimization of composite path planning of tier-to-tier and aisle-to-aisle shuttle based storage and retrieval system[J]. Computer Integrated Manufacturing Systems, 2022, 28 (6): 1888- 1902
[7]   刘刚, 王艳艳, 黄珂, 等 穿梭车自动存取系统任务调度算法适配性研究[J]. 计算机集成制造系统, 2022, 28 (5): 1435- 1448
LIU Gang, WANG Yan-yan, HUANG Ke, et al Adaptability of task scheduling algorithm for shuttle-based storage and retrieval system[J]. Computer Integrated Manufacturing Systems, 2022, 28 (5): 1435- 1448
[8]   何昕杰, 周少武, 张红强, 等 基于改进遗传算法的四向穿梭车系统订单排序优化[J]. 系统仿真学报, 2021, 33 (9): 2166- 2179
HE Xin-jie, ZHOU Shao-wu, ZHANG Hong-qiang, et al Order sorting optimization for four-way shuttle system based on improved genetic algorithm[J]. Journal of System Simulation, 2021, 33 (9): 2166- 2179
doi: 10.16182/j.issn1004731x.joss.20-0454
[9]   占翔南, 徐立云, 凌旭峰, 等 多深度四向穿梭车仓储系统调度优化[J]. 计算机集成制造系统, 2022, 28 (8): 2496- 2507
ZHAN Xiang-nan, XU Li-yun, LING Xu-feng, et al Scheduling optimization of multi-deep four-way shuttle warehousing system[J]. Computer Integrated Manufacturing Systems, 2022, 28 (8): 2496- 2507
[10]   张经天, 马莹, 翁迅, 等 四向穿梭车系统的提升机调度优化[J]. 北京邮电大学学报, 2022, 45 (1): 19- 25
ZHANG Jing-tian, MA Ying, WENG Xun, et al Optimization of lifts scheduling for four-way shuttle systems[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45 (1): 19- 25
[11]   周亚勤, 汪俊亮, 吕志军, 等 密集仓储环境下多AGV/RGV调度方法研究[J]. 机械工程学报, 2021, 57 (10): 245- 256
ZHOU Ya-qin, WANG Jun-liang, LYU Zhi-jun, et al Research on multi-AGV/RGV scheduling method in intensive storage environment[J]. Journal of Mechanical Engineering, 2021, 57 (10): 245- 256
doi: 10.3901/JME.2021.10.245
[12]   李睿智. 基于局部搜索策略的若干组合优化问题求解算法研究 [D]. 长春: 东北师范大学, 2017.
LI Rui-zhi. The algorithms for solving several combinational optimization problems based on local search strategies [D]. Changchun: Northeast Normal University, 2017.
[13]   FANDI W, KOULOUGHLI S, GHOMRI L Multi-shuttle AS/RS dimensions optimization using a genetic algorithm-case of the multi-aisle configuration[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120 (1/2): 1219- 1236
[14]   隋振, 吴涛, 唐志国, 等 四向穿梭车仓储系统的多订单任务调度优化[J]. 吉林大学学报: 理学版, 2022, 60 (2): 332- 342
SUI Zhen, WU Tao, TANG Zhi-guo, et al Multi-order task scheduling optimization of four-way shuttle storage system[J]. Journal of Jilin University: Science Edition, 2022, 60 (2): 332- 342
[15]   季顺松, 黄炎焱, 张寒, 等 基于改进遗传算法的火力分配寻优模型研究[J]. 南京理工大学学报, 2023, 47 (1): 33- 40
JI Shun-song, HUANG Yan-yan, ZHANG Han, et al Research on optimization model of firepower allocation based on improved genetic algorithm[J]. Journal of Nanjing University of Science and Technology, 2023, 47 (1): 33- 40
[16]   潘伟, 丁立超, 黄枫, 等 基于混沌“微变异”自适应遗传算法[J]. 控制与决策, 2021, 36 (8): 2042- 2048
PAN Wei, DING Li-chao, HUANG Feng, et al Adaptive genetic algorithm based on chaos "Micro variation"[J]. Control and Decision, 2021, 36 (8): 2042- 2048
[1] Peng LIU,Qingchang LU,Han QIN,Xin CUI. Road network multi-stage disaster resistance optimization model and its application[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 96-108.
[2] Huang LI,Hong-juan GE,Ying MA,Yong-shuai WANG. Parameters optimization design of dual-input dual-buck inverter system based on hyperplane NSGA-II[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 606-615.
[3] Hao ZHA,Shao-hua FEI,Yun FU,Zhen LV,Wei-dong ZHU. Online decoupling technology of six-dimensional force sensor based on EtherCAT bus[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2042-2050.
[4] Yong-sheng ZHAO,Rui-xiang LI,Na-na NIU,Zhi-yong ZHAO. Shape control method of fuselage driven by digital twin[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1457-1463.
[5] Bao-feng SUN,Xin-kang ZHANG,Gen-dao LI,Jiao-jiao LIU. Joint decision-making of balancing and sequencing for type-II robotic mixed-model assembly line[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1097-1106.
[6] Xin-ying ZHANG,Lu CHEN,Wen-hui YANG. A parallel-machine scheduling problem with time-changing effect and preventive maintenance[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 408-418.
[7] Hong-hao HU,Xiu-juan LI,Jun-feng YU,Qing-zhou ZHANG,Jing-qing LIU. Quantitative identification of inflow and infiltration of sanitary sewer system based on coupling simulation[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2313-2320.
[8] Yi-quan ZOU,Hao-zhou HUANG,Xu-yong XIA,Xin WANG. Design optimization of curved curtain wall based on genetic algorithm under cost orientation[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2049-2056.
[9] Sheng-tao XIANG,Da WANG. Model interactive modification method based on improved quantum genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 100-110.
[10] Fei JU,Wei-chao ZHUANG,Liang-mo WANG,Jing-xing LIU,Qun WANG. Velocity planning strategy for economic cruise of hybrid electric vehicles[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1538-1547.
[11] Tie ZHANG,Liang-liang HU,Yan-biao ZOU. Identification of improved friction model for robot based on hybrid genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 801-809.
[12] Lin-lin JI,Qing-wei WANG,Hao ZHOU,Mei-mei ZHENG. Optimization of cold chain fruit path considering customer satisfaction[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 307-317.
[13] Ping QI,Hong SHU. Task offloading strategy considering terminal mobility in medical wisdom scenario[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1126-1137.
[14] Xiang-fei MENG,Ren-guang WANG,Yuan-li XU. Torque distribution strategy of pure electric driving mode for dual planetary vehicle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2214-2223.
[15] Xu-ming SU,Cheng-gang FANG,Yu-bin PAN,Wei-wei WU,Ya-ping LI,Lang ZHU. Modeling error of visual measurement system under changing illuminance[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1929-1935.