1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China 2. Binhai Industrial Technology Research Institute , Zhejiang University, Tianjin 300457
A recognition model based on the calibration of soil moisture content, runoff-yield and instantaneous unit hydrograph was proposed to quantify rainfall derived infiltration and inflow (RDII) accurately and effectively in sanitary sewer networks. The effects of different rainfall intensity conditions on the calibration of model parameters were also considered. The model was applied to the load analysis of the infiltration process in the upstream of two sections of the sewage pipe network in a rural area of H city. The exponential moving average (EMA) was used to process the calibration results of 15 rainfall events. The optimal parameter sets for heavy, medium and light rainfall events were obtained. The other 6 rainfall events were used to validate model with Nash efficiency coefficients from 0.65 to 0.86. The results showed that the RDII accounts for 5%~22% of the precipitation in the study area, of which the inflow accounts for 3~9% and the infiltration accounts for 1%~13%. As the rainfall intensity getting high, the proportion of infiltration increased gradually. Different from high cost pipeline exploration, the proposed identification model makes full use of rainfall data can be used for quantitaive identification of RDII in sanitary sewer networks.
Hong-hao HU,Xiu-juan LI,Jun-feng YU,Qing-zhou ZHANG,Jing-qing LIU. Quantitative identification of inflow and infiltration of sanitary sewer system based on coupling simulation. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2313-2320.
Fig.3Example of dry weather daily flow clustering at monitoring section No.23
Fig.4Average normalized curve of dry weather flow
Fig.5Schematic presentation of inflow and Infiltration in study area
${f_{\rm{c}}}$
${W_{\rm{m}}}$
${W_i}$
${E_{\rm{m}}}$
$C/10^{-5}$
H
7.52
61.66
17.74
0.08
4.0
M
6.55
63.10
15.05
0.06
5.2
L
5.81
65.48
14.72
0.02
1.3
${N_{{{\rm{RDI,A}}}}}$
$ {K_{{{\rm{RDI,A}}}}} $
${R_{{{\rm{RDI,A}}}}}$
${N_{{{\rm{RII,A}}}}}$
$ {K_{{{\rm{RII,A}}}}} $
${R_{{{\rm{RII,A}}}}}$
H
2.77
13.39
0.35
7.67
55.63
0.94
M
2.90
10.53
0.35
16.20
56.93
0.39
L
1.03
8.13
0.74
10.27
59.43
0.02
${N_{{{\rm{RDI,B}}}}}$
$ {K_{{{\rm{RDI,B}}}}} $
${R_{{{\rm{RDI,B}}}}}$
${N_{{{\rm{RII,B}}}}}$
$ {K_{{{\rm{RII,B}}}}} $
${R_{{{\rm{RII,B}}}}}$
H
3.11
3.95
0.11
8.08
57.44
0.20
M
4.52
4.85
0.28
9.80
31.84
0.52
L
1.28
12.12
0.48
5.46
22.26
0.70
Tab.2Best parameters sets for heavy, medium and light rainfall events
降雨 事件
Ptotal/mm
区域 编号
RateRDI/%
RateRII/%
E
RMSE/ (m3/h?1)
L1
17.2
A
8.03
3.02
0.86
0.60
B
3.21
1.47
0.80
0.35
L2
16.6
A
7.92
3.40
0.89
0.90
B
3.08
1.78
0.75
0.52
M1
45.4
A
8.02
6.33
0.81
1.47
B
4.41
3.86
0.85
0.61
M2
41.2
A
8.16
5.00
0.85
2.19
B
4.74
2.66
0.79
0.72
H1
73.8
A
9.04
12.70
0.73
0.99
B
4.81
6.42
0.78
0.74
H2
223.2
A
8.10
12.5
0.65
2.92
B
3.92
6.03
0.79
0.74
Tab.3Validation results of rainfall event in test set
Fig.6Example of calculation results of RDI and RII
[1]
ZHANG Z, LAAKSO T, WANG Z, et al Comparative study of AI based methods–application of analyzing inflow and infiltration in sanitary sewer sub catchments: 15[J]. Sustainability, 2020, 12 (15): 6254
doi: 10.3390/su12156254
LANGEVELD J G, DE HAAN C, KLOOTWIJK M, et al Monitoring the performance of a storm water separating manifold with distributed temperature sensing[J]. Water Science and Technology, 2012, 66 (1): 145- 150
doi: 10.2166/wst.2012.152
[4]
PETERS W, ZIJDERVELD J, VAN MAMEREN H, et al. Laboratory investigation on the sewage separation of a manifold[M]. Rioleringswetenschap, 2002: 43-53.
[5]
GUO S, SHI X, LUO X, et al River water intrusion as a source of inflow into the sanitary sewer system[J]. Water Science and Technology, 2020, 82 (11): 2472- 2481
doi: 10.2166/wst.2020.516
[6]
DIRCKX G, VAN DAELE S, HELLINCK N Groundwater infiltration otential (GWIP) as an aid to determining the cause of dilution of waste water[J]. Journal of Hydrology, 2016, 542: 474- 486
doi: 10.1016/j.jhydrol.2016.09.020
[7]
SITZENFREI R, RAUCH W Investigating transitions of centralized water infrastructure to decentralized solutions – an integrated approach[J]. Procedia Engineering, 2014, 70: 1549- 1557
doi: 10.1016/j.proeng.2014.02.171
[8]
ELLIS B, BERTRANDKRAJEWSKI J L. Assessing infiltration and exfiltration on the performance of urban sewer systems [M]. IWA Publishing, 2010: 1-54.
[9]
ZHANG M, LIU Y, CHENG X, et al Quantifying rainfall-derived inflow and infiltration in sanitary sewer systems based on conductivity monitoring[J]. Journal of Hydrology, 2018, 558: 174- 183
doi: 10.1016/j.jhydrol.2018.01.002
[10]
郭帅, 张土乔 地下水渗入排污管道的定量方法[J]. 中国给水排水, 2013, 29 (4): 21- 25 GUO Shuai, ZHANG Tu-qiao Quantitative methods for ground water infiltration into sewer system[J]. China Water and Wastewater, 2013, 29 (4): 21- 25
[11]
WEISS G, BROMBACH H, HALLER B Infiltration and inflow in combined sewer systems: long-term analysis[J]. Water Science and Technology, 2002, 45 (7): 11- 19
doi: 10.2166/wst.2002.0112
[12]
DE BÉNÉDITTIS J, BERTRAND-KRAJEWSKI J L Infiltration in sewer systems: comparison of measurement methods[J]. Water Science and Technology, 2005, 52 (3): 219- 227
doi: 10.2166/wst.2005.0079
[13]
HOUHOU J, LARTIGES B S, FRANCE-LANORD C, et al Isotopic tracing of clear water sources in an urban sewer: a combined water and dissolved sulfate stable isotope approach[J]. Water Research, 2010, 44 (1): 25- 266
[14]
KOENIGER P, LEIBUNDGUT C, LINK T, et al Stable isotopes applied as water tracers in column and field studies[J]. Organic Geochemistry, 2010, 41 (1): 31- 40
doi: 10.1016/j.orggeochem.2009.07.006
[15]
TATIPARTHI S R, DE COSTA Y G, WHITTAKER C N, et al Development of radio frequency identification (RFID) sensors suitable for smart monitoring applications in sewer systems[J]. Water Research, 2021, 198: 117107
doi: 10.1016/j.watres.2021.117107
[16]
YIN X, CHEN Y, BOUFERGUENE A, et al A deep learning based framework for an automated defect detection system for sewer pipes[J]. Automation in Construction, 2020, 109: 102967
doi: 10.1016/j.autcon.2019.102967
[17]
MORADI S, ZAYED T, GOLKHOO F Automated sewer pipeline inspection using computer vision techniques[J]. American Society of Civil Engineers, 2018, 582- 587
[18]
FLECK, DAVID E, et al. Predicting post-concussion symptom recovery in adolescents using a novel artificial intelligence [J]. Journal of Neurotrauma, 2021, 38(7): 830-836.
[19]
VOSSE M, SCHILPEROORT R, DE HAAN C, et al Processing of DTS monitoring results: automated detection of illicit connections[J]. Water Practice and Technology, 2013, 8 (3-4): 375- 381
doi: 10.2166/wpt.2013.037
[20]
TAN P, ZHOU Y, ZHANG Y, et al Assessment and pathway determination for rainfall-derived inflow and infiltration in sanitary systems: a case study[J]. Urban Water Journal, 2019, 16 (8): 600- 607
doi: 10.1080/1573062X.2019.1700289
[21]
SHELTON J M, KIM L, FANG J, et al Assessing the severity of rainfall derived infiltration and inflow and sewer deterioration based on the flux stability of sewage markers[J]. Environmental Science and Technology, 2011, 45 (20): 8683- 8690
[22]
MATTSSON J, MATTSSON A, DAVIDSSON F, et al Normalization of wastewater quality to estimate infiltration/inflow and mass flows of metals[J]. Journal of Environmental Engineering, 2016, 142 (11): 04016050
doi: 10.1061/(ASCE)EE.1943-7870.0001120
[23]
詹道江, 徐向阳. 工程水文学[M]. 北京: 中国水利水电出版社, 2008: 42-65.
[24]
NASH J E The form of the instantaneous unit hydrograph[J]. Comptes Rendus et Rapports Assemblee Generale de Toronto, 1957, 3: 114- 121
[25]
张明凯. 基于污染物过程线模型的污水管网水量水质动态模拟研究 [D]. 北京: 清华大学, 2017: 1-124. Zhang Ming-kai. Research on dynamic variation of wastewater quantity and quality in sewer system based on pollutant hydrograph [D]. Beijing: Tsinghua University, 2017: 1-124.