Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (11): 2313-2320    DOI: 10.3785/j.issn.1008-973X.2022.11.022
    
Quantitative identification of inflow and infiltration of sanitary sewer system based on coupling simulation
Hong-hao HU1(),Xiu-juan LI2,Jun-feng YU2,Qing-zhou ZHANG2,Jing-qing LIU1,*()
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Binhai Industrial Technology Research Institute , Zhejiang University, Tianjin 300457
Download: HTML     PDF(1493KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A recognition model based on the calibration of soil moisture content, runoff-yield and instantaneous unit hydrograph was proposed to quantify rainfall derived infiltration and inflow (RDII) accurately and effectively in sanitary sewer networks. The effects of different rainfall intensity conditions on the calibration of model parameters were also considered. The model was applied to the load analysis of the infiltration process in the upstream of two sections of the sewage pipe network in a rural area of H city. The exponential moving average (EMA) was used to process the calibration results of 15 rainfall events. The optimal parameter sets for heavy, medium and light rainfall events were obtained. The other 6 rainfall events were used to validate model with Nash efficiency coefficients from 0.65 to 0.86. The results showed that the RDII accounts for 5%~22% of the precipitation in the study area, of which the inflow accounts for 3~9% and the infiltration accounts for 1%~13%. As the rainfall intensity getting high, the proportion of infiltration increased gradually. Different from high cost pipeline exploration, the proposed identification model makes full use of rainfall data can be used for quantitaive identification of RDII in sanitary sewer networks.



Key wordssanitary sewer system      rain derived infiltration and inflow      quantitative identification      coupling model      genetic algorithm     
Received: 08 December 2021      Published: 02 December 2022
CLC:  X 143  
Corresponding Authors: Jing-qing LIU     E-mail: johnkeatinghhh@zju.edu.cn;liujingqing@zju.edu.cn
Cite this article:

Hong-hao HU,Xiu-juan LI,Jun-feng YU,Qing-zhou ZHANG,Jing-qing LIU. Quantitative identification of inflow and infiltration of sanitary sewer system based on coupling simulation. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2313-2320.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.11.022     OR     https://www.zjujournals.com/eng/Y2022/V56/I11/2313


基于耦合模拟的污水管网入流入渗定量识别

为了准确有效地识别降雨引起的污水管网入流和入渗,提出了一个基于土壤蓄水量、产流过程和单位过程线耦合率定的识别模型,并且考虑到不同降雨强度工况对模型参数率定的影响. 模型被应用于H市乡镇地区污水管网2个断面上游的入流入渗过程的负荷分析,采用指数移动平均法(EMA)对15场降雨事件的校准结果进行处理,得到大、中、小3类降雨的最优参数集,用另外6场降雨来验证模型的有效性,纳什效率系数为0.65~0.86. 结果表明:研究区域内入流入渗占区域总降雨量的5%~22%,其中入流量占比为3%~9%,入渗量占比为1%~13%,随着降雨量的增大,入渗占比逐渐增加. 不同于成本较高的管道勘探,所提出的识别模型充分利用降雨数据和管网水力监测数据,可用于污水管网入流入渗的定量识别.


关键词: 污水管网,  入流入渗,  定量识别,  耦合模型,  遗传算法 
Fig.1 Schematic diagram of study site
检查井编号 静压液位计 超声液位计 流速计 雨量计
28
23
45
21
15
Tab.1 Distribution of monitoring equipment
Fig.2 Technical route of study
Fig.3 Example of dry weather daily flow clustering at monitoring section No.23
Fig.4 Average normalized curve of dry weather flow
Fig.5 Schematic presentation of inflow and Infiltration in study area
${f_{\rm{c}}}$ ${W_{\rm{m}}}$ ${W_i}$ ${E_{\rm{m}}}$ $C/10^{-5}$
H 7.52 61.66 17.74 0.08 4.0
M 6.55 63.10 15.05 0.06 5.2
L 5.81 65.48 14.72 0.02 1.3
${N_{{{\rm{RDI,A}}}}}$ $ {K_{{{\rm{RDI,A}}}}} $ ${R_{{{\rm{RDI,A}}}}}$ ${N_{{{\rm{RII,A}}}}}$ $ {K_{{{\rm{RII,A}}}}} $ ${R_{{{\rm{RII,A}}}}}$
H 2.77 13.39 0.35 7.67 55.63 0.94
M 2.90 10.53 0.35 16.20 56.93 0.39
L 1.03 8.13 0.74 10.27 59.43 0.02
${N_{{{\rm{RDI,B}}}}}$ $ {K_{{{\rm{RDI,B}}}}} $ ${R_{{{\rm{RDI,B}}}}}$ ${N_{{{\rm{RII,B}}}}}$ $ {K_{{{\rm{RII,B}}}}} $ ${R_{{{\rm{RII,B}}}}}$
H 3.11 3.95 0.11 8.08 57.44 0.20
M 4.52 4.85 0.28 9.80 31.84 0.52
L 1.28 12.12 0.48 5.46 22.26 0.70
Tab.2 Best parameters sets for heavy, medium and light rainfall events
降雨
事件
Ptotal/mm 区域
编号
RateRDI/% RateRII/% E RMSE/
(m3/h?1)
L1 17.2 A 8.03 3.02 0.86 0.60
B 3.21 1.47 0.80 0.35
L2 16.6 A 7.92 3.40 0.89 0.90
B 3.08 1.78 0.75 0.52
M1 45.4 A 8.02 6.33 0.81 1.47
B 4.41 3.86 0.85 0.61
M2 41.2 A 8.16 5.00 0.85 2.19
B 4.74 2.66 0.79 0.72
H1 73.8 A 9.04 12.70 0.73 0.99
B 4.81 6.42 0.78 0.74
H2 223.2 A 8.10 12.5 0.65 2.92
B 3.92 6.03 0.79 0.74
Tab.3 Validation results of rainfall event in test set
Fig.6 Example of calculation results of RDI and RII
[1]   ZHANG Z, LAAKSO T, WANG Z, et al Comparative study of AI based methods–application of analyzing inflow and infiltration in sanitary sewer sub catchments: 15[J]. Sustainability, 2020, 12 (15): 6254
doi: 10.3390/su12156254
[2]   中国城镇供水排水协会. 中国城镇水务行业发展报告(2020)[M]. 北京: 中国建筑工业出版社, 2020.
[3]   LANGEVELD J G, DE HAAN C, KLOOTWIJK M, et al Monitoring the performance of a storm water separating manifold with distributed temperature sensing[J]. Water Science and Technology, 2012, 66 (1): 145- 150
doi: 10.2166/wst.2012.152
[4]   PETERS W, ZIJDERVELD J, VAN MAMEREN H, et al. Laboratory investigation on the sewage separation of a manifold[M]. Rioleringswetenschap, 2002: 43-53.
[5]   GUO S, SHI X, LUO X, et al River water intrusion as a source of inflow into the sanitary sewer system[J]. Water Science and Technology, 2020, 82 (11): 2472- 2481
doi: 10.2166/wst.2020.516
[6]   DIRCKX G, VAN DAELE S, HELLINCK N Groundwater infiltration otential (GWIP) as an aid to determining the cause of dilution of waste water[J]. Journal of Hydrology, 2016, 542: 474- 486
doi: 10.1016/j.jhydrol.2016.09.020
[7]   SITZENFREI R, RAUCH W Investigating transitions of centralized water infrastructure to decentralized solutions – an integrated approach[J]. Procedia Engineering, 2014, 70: 1549- 1557
doi: 10.1016/j.proeng.2014.02.171
[8]   ELLIS B, BERTRANDKRAJEWSKI J L. Assessing infiltration and exfiltration on the performance of urban sewer systems [M]. IWA Publishing, 2010: 1-54.
[9]   ZHANG M, LIU Y, CHENG X, et al Quantifying rainfall-derived inflow and infiltration in sanitary sewer systems based on conductivity monitoring[J]. Journal of Hydrology, 2018, 558: 174- 183
doi: 10.1016/j.jhydrol.2018.01.002
[10]   郭帅, 张土乔 地下水渗入排污管道的定量方法[J]. 中国给水排水, 2013, 29 (4): 21- 25
GUO Shuai, ZHANG Tu-qiao Quantitative methods for ground water infiltration into sewer system[J]. China Water and Wastewater, 2013, 29 (4): 21- 25
[11]   WEISS G, BROMBACH H, HALLER B Infiltration and inflow in combined sewer systems: long-term analysis[J]. Water Science and Technology, 2002, 45 (7): 11- 19
doi: 10.2166/wst.2002.0112
[12]   DE BÉNÉDITTIS J, BERTRAND-KRAJEWSKI J L Infiltration in sewer systems: comparison of measurement methods[J]. Water Science and Technology, 2005, 52 (3): 219- 227
doi: 10.2166/wst.2005.0079
[13]   HOUHOU J, LARTIGES B S, FRANCE-LANORD C, et al Isotopic tracing of clear water sources in an urban sewer: a combined water and dissolved sulfate stable isotope approach[J]. Water Research, 2010, 44 (1): 25- 266
[14]   KOENIGER P, LEIBUNDGUT C, LINK T, et al Stable isotopes applied as water tracers in column and field studies[J]. Organic Geochemistry, 2010, 41 (1): 31- 40
doi: 10.1016/j.orggeochem.2009.07.006
[15]   TATIPARTHI S R, DE COSTA Y G, WHITTAKER C N, et al Development of radio frequency identification (RFID) sensors suitable for smart monitoring applications in sewer systems[J]. Water Research, 2021, 198: 117107
doi: 10.1016/j.watres.2021.117107
[16]   YIN X, CHEN Y, BOUFERGUENE A, et al A deep learning based framework for an automated defect detection system for sewer pipes[J]. Automation in Construction, 2020, 109: 102967
doi: 10.1016/j.autcon.2019.102967
[17]   MORADI S, ZAYED T, GOLKHOO F Automated sewer pipeline inspection using computer vision techniques[J]. American Society of Civil Engineers, 2018, 582- 587
[18]   FLECK, DAVID E, et al. Predicting post-concussion symptom recovery in adolescents using a novel artificial intelligence [J]. Journal of Neurotrauma, 2021, 38(7): 830-836.
[19]   VOSSE M, SCHILPEROORT R, DE HAAN C, et al Processing of DTS monitoring results: automated detection of illicit connections[J]. Water Practice and Technology, 2013, 8 (3-4): 375- 381
doi: 10.2166/wpt.2013.037
[20]   TAN P, ZHOU Y, ZHANG Y, et al Assessment and pathway determination for rainfall-derived inflow and infiltration in sanitary systems: a case study[J]. Urban Water Journal, 2019, 16 (8): 600- 607
doi: 10.1080/1573062X.2019.1700289
[21]   SHELTON J M, KIM L, FANG J, et al Assessing the severity of rainfall derived infiltration and inflow and sewer deterioration based on the flux stability of sewage markers[J]. Environmental Science and Technology, 2011, 45 (20): 8683- 8690
[22]   MATTSSON J, MATTSSON A, DAVIDSSON F, et al Normalization of wastewater quality to estimate infiltration/inflow and mass flows of metals[J]. Journal of Environmental Engineering, 2016, 142 (11): 04016050
doi: 10.1061/(ASCE)EE.1943-7870.0001120
[23]   詹道江, 徐向阳. 工程水文学[M]. 北京: 中国水利水电出版社, 2008: 42-65.
[24]   NASH J E The form of the instantaneous unit hydrograph[J]. Comptes Rendus et Rapports Assemblee Generale de Toronto, 1957, 3: 114- 121
[25]   张明凯. 基于污染物过程线模型的污水管网水量水质动态模拟研究 [D]. 北京: 清华大学, 2017: 1-124.
Zhang Ming-kai. Research on dynamic variation of wastewater quantity and quality in sewer system based on pollutant hydrograph [D]. Beijing: Tsinghua University, 2017: 1-124.
[1] Yong-sheng ZHAO,Rui-xiang LI,Na-na NIU,Zhi-yong ZHAO. Shape control method of fuselage driven by digital twin[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1457-1463.
[2] Bao-feng SUN,Xin-kang ZHANG,Gen-dao LI,Jiao-jiao LIU. Joint decision-making of balancing and sequencing for type-II robotic mixed-model assembly line[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1097-1106.
[3] Xin-ying ZHANG,Lu CHEN,Wen-hui YANG. A parallel-machine scheduling problem with time-changing effect and preventive maintenance[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 408-418.
[4] Yi-quan ZOU,Hao-zhou HUANG,Xu-yong XIA,Xin WANG. Design optimization of curved curtain wall based on genetic algorithm under cost orientation[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2049-2056.
[5] Sheng-tao XIANG,Da WANG. Model interactive modification method based on improved quantum genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 100-110.
[6] Fei JU,Wei-chao ZHUANG,Liang-mo WANG,Jing-xing LIU,Qun WANG. Velocity planning strategy for economic cruise of hybrid electric vehicles[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1538-1547.
[7] Tie ZHANG,Liang-liang HU,Yan-biao ZOU. Identification of improved friction model for robot based on hybrid genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 801-809.
[8] Lin-lin JI,Qing-wei WANG,Hao ZHOU,Mei-mei ZHENG. Optimization of cold chain fruit path considering customer satisfaction[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 307-317.
[9] Ping QI,Hong SHU. Task offloading strategy considering terminal mobility in medical wisdom scenario[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1126-1137.
[10] Xiang-fei MENG,Ren-guang WANG,Yuan-li XU. Torque distribution strategy of pure electric driving mode for dual planetary vehicle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2214-2223.
[11] Xu-ming SU,Cheng-gang FANG,Yu-bin PAN,Wei-wei WU,Ya-ping LI,Lang ZHU. Modeling error of visual measurement system under changing illuminance[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1929-1935.
[12] Fang-fang TAN,Jun-jiang ZHU,Tian-hong YAN,Zhi-qiang GAO,Ling-song HE. Surface roughness prediction of 6061 aluminum alloy based on GA-WPT-ELM[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 40-47.
[13] Feng CHENG,Dong ZHANG,Shuo TANG. Aerodynamics/propulsion coupled modeling and analysis of hypersonic vehicle within wide speed range[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 1006-1018.
[14] ZHANG Man, SHI Shu-ming. Non-isometric crossover evolution algorithm of Markov chain for designing vehicle driving cycles[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1658-1666.
[15] JIAO Long-long, LUO Sen-lin, LIU Wang-tong, PAN Li-min, ZHANG Ji. Fuzz testing for binary program based on genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 1014-1019.