Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (10): 1977-1986    DOI: 10.3785/j.issn.1008-973X.2023.10.007
    
Multi-behavior aware service recommendation based on hypergraph graph convolution neural network
Jia-wei LU1,2(),Duan-ni LI1,Ce-ce WANG3,Jun XU1,Gang XIAO1,2,*()
1. College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
2. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China
3. College of Information Engineering, China Jiliang University, Hangzhou 310018, China
Download: HTML     PDF(1380KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A multi-behavior aware service recommendation method based on hypergraph graph convolutional neural network (MBSRHGNN) was proposed to resolve the problem of insufficient high-order service feature extraction in existing service recommendation methods. A multi-hypergraph was constructed according to user-service interaction types and service mashups. A dual-channel hypergraph convolutional network was designed based on the spectral decomposition theory with functional and structural properties of multi-hypergraph. Chebyshev polynomial was used to approximate hypergraph convolution kernel to reduce computational complexity. Self-attention mechanism and multi-behavior recommendation methods were combined to measure the importance difference between multi-behavior interactions during the hypergraph convolution process. A hypergraph pooling method named HG-DiffPool was proposed to reduce the feature dimensionality. The probability distribution for recommending different services was learned by integrating service embedding vector and hypergraph signals. Real service data was obtained by the crawler and used to construct datasets with different sparsity for experiments. Experimental results showed that the MBSRHGNN method could adapt to recommendation scenario with highly sparse data, and was superior to the existing baseline methods in accuracy and relevance.



Key wordsservice recommendation      graph neural network      hypergraph learning      multi-behavior recommendation      attention mechanism     
Received: 01 February 2023      Published: 18 October 2023
CLC:  TP 391  
Fund:  国家自然科学基金资助项目(61976193);国家社会科学基金资助项目(22BMZ038);浙江省重点研发计划资助项目(2021C03136)
Corresponding Authors: Gang XIAO     E-mail: viivan@zjut.edu.cn;xg@zjut.edu.cn
Cite this article:

Jia-wei LU,Duan-ni LI,Ce-ce WANG,Jun XU,Gang XIAO. Multi-behavior aware service recommendation based on hypergraph graph convolution neural network. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 1977-1986.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.10.007     OR     https://www.zjujournals.com/eng/Y2023/V57/I10/1977


基于超图卷积神经网络的多行为感知服务推荐方法

针对现有服务推荐方法中高阶服务特征提取不够充分的问题,提出基于超图卷积神经网络的多行为感知服务推荐方法(MBSRHGNN). 该方法根据服务交互类型和服务组合信息构建多重超图,基于谱分解理论和多重超图的功能结构特性以设计双通道超图卷积网络. 利用切比雪夫多项式近似超图卷积核来降低计算复杂度;在超图卷积过程中,结合多行为推荐方法和自注意力机制度量多行为交互之间的重要性差异,提出HG-DiffPool超图池化方法来降低特征维度;通过融合服务嵌入向量和超图信号,学习不同服务的推荐概率分布;爬取真实服务数据,构造不同稀疏度的数据集进行实验. 实验结果表明,所提的MBSRHGNN服务推荐方法能够适应数据高度稀疏的推荐场景,并且在推荐精确度和相关性上的表现优于现有基线方法.


关键词: 服务推荐,  图神经网络,  超图学习,  多行为推荐,  注意力机制 
Fig.1 Framework of MBSRHGNN
Fig.2 Self-attention mechanism on behavior-aware hypergraph
数据集 μ ε λ l ? ρ Z
稀疏数据集 3516 6206 13329 42.35 523 0.039 [view, follow,choose]
稠密数据集 11032 6206 13329 43.46 3047 0.230 [view, follow,choose]
Tab.1 Statistics of datasets used in experiments
模型 稀疏数据集 稠密数据集
HR@5 NDCG@5 HR@10 NDCG@10 MRR HR@5 NDCG@5 HR@10 NDCG@10 MRR
AFMRec 0.381 0.358 0.384 0.352 0.372 0.412 0.407 0.428 0.404 0.383
WR-MSN 0.335 0.312 0.321 0.303 0.314 0.465 0.452 0.442 0.431 0.428
DHCN 0.342 0.303 0.352 0.323 0.328 0.383 0.336 0.371 0.342 0.334
HyperRec 0.481 0.474 0.513 0.489 0.452 0.512 0.498 0.527 0.515 0.482
MBHT 0.482 0.436 0.509 0.462 0.474 0.528 0.477 0.542 0.496 0.506
MB-GCN 0.387 0.322 0.419 0.349 0.364 0.363 0.311 0.392 0.327 0.339
MBSRHGNN 0.504 0.489 0.547 0.507 0.497 0.572 0.542 0.596 0.556 0.541
IMP/% 4.5 3.2 4.8 3.8 4.9 8.3 8.8 5.6 7.9 7.8
Tab.2 Accuracy and correlation comparison results of MBSRHCNN model and baseline method
Fig.3 Ablation experimental results of multi-hypergraph structure
Fig.4 Service recommendation performance under different feature dimension settings
[1]   曹步清, 肖巧翔, 张祥平, 等 融合 SOM 功能聚类与 DeepFM 质量预测的 API 服务推荐方法[J]. 计算机学报, 2019, 42 (6): 1367- 1383
CAO Bu-qing, XIAO Qiao-xiang, ZHANG Xiang-ping, et al An API service recommendation method via combining self-organization map-based functionality clustering and deep factorization machine-based quality prediction[J]. Chinese Journal of Computers, 2019, 42 (6): 1367- 1383
doi: 10.11897/SP.J.1016.2019.01367
[2]   ZHENG Z, MA H, LYU M R, et al. WSRec: a collaborative filtering based web service recommender system [C]// IEEE International Conference on Web Services. Los Angeles: IEEE, 2009: 437-444.
[3]   JIANG Y, LIU J, TANG M, et al. An effective web service recommendation method based on personalized collaborative filtering [C]// IEEE International Conference on Web Services. Washington: IEEE, 2011: 211-218.
[4]   AGARWAL N, SIKKA G, AWASTHI L K Enhancing web service clustering using Length Feature Weight Method for service description document vector space representation[J]. Expert Systems with Applications, 2020, 161: 113682
doi: 10.1016/j.eswa.2020.113682
[5]   陆佳炜, 吴涵, 张元鸣, 等 融合功能语义关联计算与密度峰值检测的Mashup服务聚类方法[J]. 计算机学报, 2021, 44 (7): 1501- 1516
LU Jia-wei, WU Han, ZHANG Yuan-ming, et al Mashup service clustering method via integrating functional semantic association calculation and density peak detection[J]. Chinese Journal of Computers, 2021, 44 (7): 1501- 1516
[6]   陆佳炜, 郑嘉弘, 李端倪, 等 面向服务聚类的短文本优化主题模型[J]. 浙江大学学报: 工学版, 2021, 56 (12): 2416- 2425
LU Jia-wei, ZHENG Jia-hong, LI Duan-ni, et al Short text optimized topic model for service clustering[J]. Journal of Zhejian University: Engineering Science, 2021, 56 (12): 2416- 2425
[7]   CAO Y, LIU J, SHI M, et al. Service recommendation based on attentional factorization machine [C]// IEEE International Conference on Services Computing. Milan: IEEE, 2019: 189-196.
[8]   XIA X, YIN H, YU J, et al. Self-supervised hypergraph convolutional networks for session-based recommendation [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Virtual Event: AAAI, 2021: 4503-4511.
[9]   WU S, TANG Y, ZHU Y, et al. Session-based recommendation with graph neural networks [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Hawaii: AAAI, 2019: 346-353.
[10]   FENG Y, YOU H, ZHANG Z, et al. Hypergraph neural networks [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Hawaii: AAAI, 2019: 3558-3565.
[11]   JIN B, GAO C, HE X, et al. Multi-behavior recommendation with graph convolutional networks [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. Xi'an: ACM, 2020: 659-668.
[12]   YANG Y, HUANG C, XIA L, et al. Multi-behavior hypergraph-enhanced transformer for sequential recommendation [C]// Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Washington: ACM, 2022: 2263-2274.
[13]   XIA L, XU Y, HUANG C, et al. Graph meta network for multi-behavior recommendation [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. Virtual Event: ACM, 2021: 757-766.
[14]   BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and deep locally connected networks on graphs [C]// International Conference on Learning Representations. Banff: [s.n.], 2014: 1-14.
[15]   WELLING M, KIPF T N. Semi-supervised classification with graph convolutional networks [C]// International Conference on Learning Representations. Toulon: [s.n.], 2017: 1-14.
[16]   CHEUNG M, SHI J, JIANG L, et al. Pooling in graph convolutional neural networks [C]// 53rd Asilomar Conference on Signals, Systems, and Computers. Pacific Grove: IEEE, 2019: 462-466.
[17]   YING Z, YOU J, MORRIS C, et al. Hierarchical graph representation learning with differentiable pooling [C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal: NIPS, 2018: 4805-4815.
[18]   LI J, REN P, CHEN Z, et al. Neural attentive session-based recommendation [C]// Proceedings of ACM on Conference on Information and Knowledge Management. Singapore: ACM, 2017: 1419-1428.
[1] Hai-feng LI,Xue-ying ZHANG,Shu-fei DUAN,Hai-rong JIA,Hui-zhi LIANG. Fusing generative adversarial network and temporal convolutional network for Mandarin emotion recognition[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1865-1875.
[2] Xiao-qiang ZHAO,Ze WANG,Zhao-yang SONG,Hong-mei JIANG. Image super-resolution reconstruction based on dynamic attention network[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1487-1494.
[3] Hui-xin WANG,Xiang-rong TONG. Research progress of recommendation system based on knowledge graph[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1527-1540.
[4] Xiu-lan SONG,Zhao-hang DONG,Hang-guan SHAN,Wei-jie LU. Vehicle trajectory prediction based on temporal-spatial multi-head attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1636-1643.
[5] Xiao-yan LI,Peng WANG,Jia GUO,Xue LI,Meng-yu SUN. Multi branch Siamese network target tracking based on double attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1307-1316.
[6] Wei QUAN,Yong-qing CAI,Chao WANG,Jia SONG,Hong-kai SUN,Lin-xuan LI. VR sickness estimation model based on 3D-ResNet two-stream network[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1345-1353.
[7] Jun HAN,Xiao-ping YUAN,Zhun WANG,Ye CHEN. UAV dense small target detection algorithm based on YOLOv5s[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1224-1233.
[8] Xue-yong XIANG,Li WANG,Wen-peng ZONG,Guang-yun LI. Point cloud instance segmentation based on attention mechanism KNN and ASIS module[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 875-882.
[9] Yu-ting SU,Rong-xuan LU,Wei ZHANG. Vehicle re-identification algorithm based on attention mechanism and adaptive weight[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 712-718.
[10] Bai-cheng BIAN,Tian CHEN,Ru-jun WU,Jun LIU. Improved YOLOv3-based defect detection algorithm for printed circuit board[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 735-743.
[11] Yan-fen CHENG,Jia-jun WU,Fan HE. Aspect level sentiment analysis based on relation gated graph convolutional network[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 437-445.
[12] Qing-song ZHOU,Xiao-dong CAI,Jia-liang LIU. Personalized recommendation algorithm combining social influence and long short-term preference[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 495-502.
[13] Ju-xiang ZENG,Ping-hui WANG,Yi-dong DING,Lin LAN,Lin-xi CAI,Xiao-hong GUAN. Graph neural network based node embedding enhancement model for node classification[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 219-225.
[14] Jing-jing ZHANG,Zhao-gong ZHANG,Xin XU. Graph convolution collaborative filtering model combining graph enhancement and sampling strategies[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 243-251.
[15] Fan YANG,Bo NING,Huai-qing LI,Xin ZHOU,Guan-yu LI. Multimodal image retrieval model based on semantic-enhanced feature fusion[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 252-258.