Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (3): 495-502    DOI: 10.3785/j.issn.1008-973X.2023.03.007
    
Personalized recommendation algorithm combining social influence and long short-term preference
Qing-song ZHOU(),Xiao-dong CAI*(),Jia-liang LIU
School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China
Download: HTML     PDF(793KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Session-based recommendation algorithms only capture users’ short-term dynamic interests, ignoring the impact of long-term interests and social friends on their behavior. To address the problem, a recommendation algorithm combining social influence and long short-term preferences was proposed. Firstly, a novel heterogeneous relation graph was designed to organize users’ social relations and historical interaction behaviors. And a heterogeneous graph neural network based on the attention mechanism was proposed to learn the graph, and to obtain long-term preference for integrating social influence of users. Moreover, considering the problem of noise caused by inconsistent social influence, a weighted and pruning strategy was proposed to reduce noise interference and enrich the graph structure information. Then, a lossless session modeling method was used to capture users’ short-term preference. Finally, users’ short-term preference and long-term preference were adaptively fused to obtain a feature representation that reflects users’ global preferences. Experimental results on Gowalla and Delicious datasets show that the indicators of the proposed method are significantly improved compared with the existing advanced methods, which proves the effectiveness of the proposed algorithm.



Key wordsrecommendation algorithm      social influence      long short-term preference      weighted and pruning strategy      heterogeneous relation graph      heterogeneous graph neural network     
Received: 09 March 2022      Published: 31 March 2023
CLC:  TP 391  
Fund:  广西创新驱动发展专项(AA20302001)
Corresponding Authors: Xiao-dong CAI     E-mail: 1796296884@qq.com;caixiaodong@guet.edu.cn
Cite this article:

Qing-song ZHOU,Xiao-dong CAI,Jia-liang LIU. Personalized recommendation algorithm combining social influence and long short-term preference. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 495-502.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.03.007     OR     https://www.zjujournals.com/eng/Y2023/V57/I3/495


结合社交影响和长短期偏好的个性化推荐算法

针对基于会话的推荐算法只捕获用户的短期动态兴趣,忽略长期兴趣和社交好友对用户行为的影响,提出结合社交影响和长短期偏好的推荐算法. 设计新颖的异构关系图来组织用户的社交关系和历史会话,提出基于注意力机制的异构图神经网络对图进行学习,得到融合用户社交影响的长期偏好. 针对社交影响力不一致容易引入噪声的问题,提出加权剪枝策略,减少了噪声干扰且丰富了图结构信息. 利用无损的会话建模方法捕获用户的短期偏好,将短期偏好与长期偏好进行自适应融合,得到反映用户全局偏好的特征表示. Gowalla和Delicious数据集上的实验结果表明,所提方法的各项指标相比现有先进方法均有显著提升,证明了所提算法的有效性.


关键词: 推荐算法,  社交影响,  长短期偏好,  加权剪枝策略,  异构关系图,  异构图神经网络 
Fig.1 Framework of social influence and long short-term preferences for personalized recommendation model
数据集 $ |U| $ $ |V| $ 交互数 会话数 社交关系数
Gowalla 33654 40473 1130463 258628 283972
Delicious 1313 5781 266044 60397 9130
Tab.1 Statistical information of two experimental datasets
模型 Gowalla Delicious
HR@20 MMR@20 HR@20 MMR@20
NARM 49.93 23.58 46.45 20.36
DGRec 50.44 24.05 47.43 20.69
LESSR 51.76 25.41 47.84 21.40
FLCSP 52.52 25.75 48.53 21.58
SLSPR 55.13 27.35 51.67 23.53
Tab.2 Experimental results on validity of social influence and long short-term preferences for personalized recommendation (SLSPR) model
模型 Gowalla Delicious
HR@20 MMR@20 HR@20 MMR@20
LESSR 51.76 25.41 47.84 21.40
SLSPR 55.13 27.35 51.67 23.53
SLSPR-UU 54.53 26.78 50.94 23.06
Tab.3 Effectiveness comparison of users’ social relationships and long-term preferences
模型 Gowalla Delicious
HR@20 MMR@20 HR@20 MMR@20
SLSPR 55.13 27.35 51.67 23.53
SLSPR-WP 54.74 27.07 51.26 23.23
Tab.4 Effectiveness comparison of weighting and pruning operations
$ \theta $ Gowalla Delicious
Ns P/% Ns P/%
012345 283 972116 71457 48029 15415 9869 384 10041.1020.2410.275.633.30 9 1307 9326 3924 5742 8741 266 10086.8870.0150.1031.4813.87
Tab.5 Impact of social influence threshold on number of social relationships
Fig.2 Influence of social influence threshold on recommendation performance
[1]   WANG S, CAO L, WANG Y, et al A survey on session-based recommender systems[J]. ACM Computing Surveys, 2022, 54 (7): 1- 38
[2]   HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks [EB/OL]. [2022-03-09]. https://arxiv.org/pdf/1511.06939.pdf.
[3]   MIKOLOV T, KARAFIAT M, BURGET L, et al. Recurrent neural network based language model [C]// Interspeech. Chiba: [s. n.], 2010: 1045-1048.
[4]   LI J, REN P, CHEN Z, et al. Neural attentive session-based recommendation [C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. Singapore: ACM, 2017: 1419-1428.
[5]   LIU Q, ZENG Y, MOKHOSI R, et al. STAMP: short-term attention/memory priority model for session-based recommendation [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. London: ACM, 2018: 1831-1839.
[6]   KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. [2022-03-09]. https://arxiv.org/pdf/1609.02907.pdf.
[7]   HAMILTON W, YING Z, LESKOVEC J. Inductive representation learning on large graphs [C]// Proceedings of the 31st International Conference Neural Information Processing Systems. Long Beach: [s. n.], 2017: 1025-1035.
[8]   WU S, TANG Y, ZHU Y, et al. Session-based recommendation with graph neural networks [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Honolulu: AAAI, 2019: 346-353.
[9]   ZHANG Z, WANG B Fusion of latent categorical prediction and sequential prediction for session-based recommendation[J]. Information Sciences, 2021, 569: 125- 137
doi: 10.1016/j.ins.2021.04.019
[10]   CHEN T, WONG R C W. Handling information loss of graph neural networks for session-based recommendation [C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. [S. l.]: ACM, 2020: 1172-1180.
[11]   PANG Y, WU L, SHEN Q, et al. Heterogeneous global graph neural networks for personalized session-based recommendation [C]// Proceeding of the 15th ACM International Conference on Web Search and Data Mining. [S. l.]: ACM, 2022: 775-783.
[12]   MA H, ZHOU D, LIU C, et al. Recommender systems with social regularization [C]// Proceedings of the 4th ACM International Conference on Web Search and Data Mining. Hong Kong: ACM, 2011: 287-296.
[13]   ZHAO T, MCAULEY J, KING I. Leveraging social connections to improve personalized ranking for collaborative filtering [C]// Proceedings of the 23rd ACM International Conference on Information and Knowledge Management. Shanghai: ACM, 2014: 261-270.
[14]   XIAO L, MIN Z, YONGFENG Z, et al. Learning and transferring social and item visibilities for personalized recommendation [C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. Singapore: ACM, 2017: 337-346.
[15]   FAN W, MA Y, LI Q, et al. Graph neural networks for social recommendation [C]// The World Wide Web Conference. San Francisco: [s. n.], 2019: 417-426.
[16]   SONG W, XIAO Z, WANG Y, et al. Session-based social recommendation via dynamic graph attention networks [C]// Proceedings of the 12th ACM International Conference on Web Search and Data Mining. Melbourne: ACM, 2019: 555-563.
[17]   GU P, HAN Y, GAO W, et al Enhancing session-based social recommendation through item graph embedding and contextual friendship modeling[J]. Neurocomputing, 2021, 419: 190- 202
doi: 10.1016/j.neucom.2020.08.023
[18]   FU B, ZHANG W, HU G, et al. Dual side deep context-aware modulation for social recommendation [C]// Proceedings of the Web Conference 2021. Ljubljana: [s. n.], 2021: 2524-2534.
[1] Shao-ming XU,Yu LI,Qing-long YUAN. Combination pruning method based on reinforcement learning and 3σ criterion[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 486-494.
[2] Kun LIU,Xiao-song YANG. Surface defect identification of cross scene strip based on unsupervised domain adaptation[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 477-485.
[3] Yao ZENG,Fa-qin GAO. Surface defect detection algorithm of electronic components based on improved YOLOv5[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 455-465.
[4] Yu-xiang LU,Guan-hua XU,Bo TANG. Worker behavior recognition based on temporal and spatial self-attention of vision Transformer[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 446-454.
[5] Yan-fen CHENG,Jia-jun WU,Fan HE. Aspect level sentiment analysis based on relation gated graph convolutional network[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 437-445.
[6] Chang-chun YANG,Zan-ting YE,Ban-teng LIU,Ke WANG,Hai-dong CUI. Medical image segmentation method based on multi-source information fusion[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 226-234.
[7] Feng-long SU,Ning JING. Temporal knowledge graph representation learning based on relational aggregation[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 235-242.
[8] Fan YANG,Bo NING,Huai-qing LI,Xin ZHOU,Guan-yu LI. Multimodal image retrieval model based on semantic-enhanced feature fusion[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 252-258.
[9] Tian-qi ZHOU,Yan YANG,Ji-jie ZHANG,Shao-wei YIN,Zeng-qiang GUO. Graph contrastive learning based on negative-sample-free loss and adaptive augmentation[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 259-266.
[10] Chao LIU,Bing KONG,Guo-wang DU,Li-hua ZHOU,Hong-mei CHEN,Chong-ming BAO. Deep clustering via high-order mutual information maximization and pseudo-label guidance[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 299-309.
[11] Qiao-jie LU,Nan WANG,Jin-bao LI,Kun LI. Point-of-interest recommendation integrating user perception and multi-factor[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 310-319.
[12] Jia-hao HE,Xi-ping LIU,Qing SHU,Chang-xuan WAN,De-xi LIU,Guo-qiong LIAO. SQL generation from natural language queries with complex calculations on financial data[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 277-286.
[13] Hua HUANG,Qiu-ge ZHAO,Zai-xing HE,Jia-ran LI. Contour error control of two-axis system based on LSTM and Newton iteration[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 10-20.
[14] Chen YE,Hong-fei ZHAN,Ying-jun LIN,Jun-he YU,Rui WANG,Wu-chang ZHONG. Design knowledge recommendation based on inference-context-aware activation model[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 32-46.
[15] Li-zhou FENG,Yang YANG,You-wei WANG,Gui-jun YANG. New method for news recommendation based on Transformer and knowledge graph[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 133-143.