|
|
Aspect level sentiment analysis based on relation gated graph convolutional network |
Yan-fen CHENG(),Jia-jun WU,Fan HE |
School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan 430070, China |
|
|
Abstract In aspect level sentiment analysis, existing methods struggle to effectively utilize the types of syntactic relations, and the performance of the model is affected by the accuracy of the dependency parsing. To resolve these challenges, an attention augmented relation gated graph convolutional network (ARGCN) model was proposed. The model uses a bidirectional long-short-term memory (BiLSTM) network to learn the sequential feature of sentences, and combines feature with the dependency probability matrix to construct a word graph. Then the model uses a relation gated graph convolutional network (RG-GCN) and an attention augmented network (AAN) to obtain the sentiment features of aspect words from the word graph and the sequential feature of sentences, respectively. Finally, the outputs of RG-GCN and AAN are concatenated as the final sentiment feature of aspect words. Contrastive experiments and ablation experiments were conducted on SemEval 2014 and Twitter datasets. And the results show that the ARGCN model can effectively utilize relation types, reduce the impact of dependency parsing accuracy on its performance, and better establish the connection between aspect words and opinion words. The model accuracy is better than all baseline models.
|
Received: 01 April 2022
Published: 31 March 2023
|
|
基于关系门控图卷积网络的方面级情感分析
在方面级情感分析任务中,现有方法难以有效利用句法关系类型且性能依赖依存解析的准确性,为此提出注意力增强的关系门控图卷积神经网络(ARGCN)模型. 该模型将双向长短时记忆(BiLSTM)网络学习得到的句子顺序特征与依存概率矩阵相结合构建单词图;利用关系门控图卷积神经网络(RG-GCN)和注意力增强网络(AAN)分别从单词图和句子的顺序特征中获取方面词的情感特征;拼接RG-GCN和AAN的输出作为方面词最终的情感特征. 在数据集 SemEval 2014 、 Twitter 上进行对比实验和消融实验,结果表明ARGCN模型可以有效地利用关系类型,减小依存解析准确性对模型性能的影响,更好地建立方面词和意见词的联系,模型准确率优于所有基线模型.
关键词:
方面级情感分析,
图卷积网络,
注意力机制,
依存树,
门机制,
自然语言处理
|
|
[1] |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. (2017-02-22)[2022-04-01]. https://arxiv.org/pdf/1609.02907.pdf.
|
|
|
[2] |
VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks [EB/OL]. (2018-02-04)[2022-04-01]. https://arxiv.org/pdf/1710.10903.pdf.
|
|
|
[3] |
SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks [C]// European Semantic Web Conference. [S. l.]: Springer, 2018: 593-607.
|
|
|
[4] |
KIRITCHENKO S, ZHU X, CHERRY C, et al. NRC-Canada-2014: detecting aspects and sentiment in customer reviews [C]// Proceedings of the 8th International Workshop on Semantic Evaluation. Dublin: Association for Computational Linguistics, 2014: 437-442.
|
|
|
[5] |
WAGNER J, ARORA P, CORTES S, et al. DCU: aspect-based polarity classification for SemEval task 4 [C]// Proceedings of the 8th International Workshop on Semantic Evaluation. Dublin: Association for Computational Linguistics, 2014: 223–229.
|
|
|
[6] |
TANG D, QIN B, LIU T. Aspect level sentiment classification with deep memory network [EB/OL]. (2016-09-24)[2022-04-01]. https://arxiv.org/pdf/1605.08900.pdf.
|
|
|
[7] |
CHEN P, SUN Z, BING L, et al. Recurrent attention network on memory for aspect sentiment analysis [C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen: Association for Computational Linguistics, 2017: 452-461.
|
|
|
[8] |
MA D, LI S, ZHANG X, et al. Interactive attention networks for aspect-level sentiment classification [EB/OL]. (2017-09-04)[2022-04-01].https://arxiv.org/pdf/1709.00893.pdf.
|
|
|
[9] |
ZENG B, YANG H, XU R, et al LCF: a local context focus mechanism for aspect-based sentiment classification[J]. Applied Sciences, 2019, 9 (16): 3389
doi: 10.3390/app9163389
|
|
|
[10] |
SONG Y, WANG J, JIANG T, et al. Attentional encoder network for targeted sentiment classification [EB/OL]. (2019-04-01)[2022-04-01]. https://arxiv.org/pdf/1902.09314.pdf.
|
|
|
[11] |
XU Q, ZHU L, DAI T, et al Aspect-based sentiment classification with multi-attention network[J]. Neurocomputing, 2020, 388: 135- 143
doi: 10.1016/j.neucom.2020.01.024
|
|
|
[12] |
SONG W, WEN Z, XIAO Z, et al Semantics perception and refinement network for aspect-based sentiment analysis[J]. Knowledge-Based Systems, 2021, 214: 106755
doi: 10.1016/j.knosys.2021.106755
|
|
|
[13] |
宋威, 温子健 基于特征双重蒸馏网络的方面级情感分析[J]. 中文信息学报, 2021, 35 (7): 126- 133 SONG Wei, WEN Zi-jian Feature dual distillation network for aspect-based sentiment analysis[J]. Journal of Chinese Information Processing, 2021, 35 (7): 126- 133
|
|
|
[14] |
毛腾跃, 郑志鹏, 郑禄 基于改进自注意力机制的方面级情感分析[J]. 中南民族大学学报:自然科学版, 2022, 41 (1): 94- 100 MAO Teng-yue, ZHENG Zhi-peng, ZHENG Lu Aspect-level sentiment analysis based on improved self-attention mechanism[J]. Journal of South-Central University for Nationalities: Natural Science Edition, 2022, 41 (1): 94- 100
|
|
|
[15] |
SUN K, ZHANG R, MENSAH S, et al. Aspect-level sentiment analysis via convolution over dependency tree [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong: Association for Computational Linguistics, 2019: 5679-5688.
|
|
|
[16] |
HUANG B, CARLEY K M. Syntax-aware aspect level sentiment classification with graph attention networks [EB/OL]. (2019-09-05)[2022-04-01]. https://arxiv.org/pdf/1909.02606.pdf.
|
|
|
[17] |
ZHANG C, LI Q, SONG D. Aspect-based sentiment classification with aspect-specific graph convolutional networks [EB/OL]. (2019-10-13)[2022-04-01]. https://arxiv.org/pdf/1909.03477.pdf.
|
|
|
[18] |
WANG K, SHEN W, YANG Y, et al. Relational graph attention network for aspect-based sentiment analysis [EB/OL]. (2020-04-26)[2022-04-01]. https://arxiv.org/pdf/2004.12362.pdf.
|
|
|
[19] |
TANG H, JI D, LI C, et al. Dependency graph enhanced dual-transformer structure for aspect-based sentiment classification [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online: Association for Computational Linguistics, 2020: 6578-6588.
|
|
|
[20] |
VASWANI A, SHAZEER N, PARMAR N, et al Attention is all you need[J]. Advances in Neural Information Processing systems, 2017, 30
|
|
|
[21] |
LI R, CHEN H, FENG F, et al. Dual graph convolutional networks for aspect-based sentiment analysis [C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Online: Association for Computational Linguistics, 2021: 6319-6329.
|
|
|
[22] |
LI Y, SUN X, WANG M. Embedding extra knowledge and a dependency tree based on a graph attention network for aspect-based sentiment analysis [C]// 2021 International Joint Conference on Neural Networks. Shenzhen: IEEE, 2021: 1-8.
|
|
|
[23] |
张合桥, 苟刚, 陈青梅 基于图神经网络的方面级情感分析[J]. 计算机应用研究, 2021, 38 (12): 3574- 3580 ZHANG He-qiao, GOU Gang, CHEN Qing-mei Aspect-based sentiment analysis based on graph neural network[J]. Application Research of Computers, 2021, 38 (12): 3574- 3580
|
|
|
[24] |
韩虎, 吴渊航, 秦晓雅 面向方面级情感分析的交互图注意力网络模型[J]. 电子与信息学报, 2021, 43 (11): 3282- 3290 HAN Hu, WU Yuan-hang, QIN Xiao-ya An interactive graph attention networks model for aspect-level sentiment analysis[J]. Journal of Electronics and Information Technology, 2021, 43 (11): 3282- 3290
|
|
|
[25] |
夏鸿斌, 顾艳, 刘渊 面向特定方面情感分析的图卷积过度注意(ASGCN-AOA)模型[J]. 中文信息学报, 2022, 36 (3): 146- 153 XIA Hong-bin, GU Yan, LIU Yuan Graph convolution overattention(ASGCN-AOA) model for specific aspects of sentiment analysis[J]. Journal of Chinese Information Processing, 2022, 36 (3): 146- 153
|
|
|
[26] |
PONTIKI M, GALANIS D, PAVLOPOULOS J, et al, SemEval-2014 task 4: aspect based sentiment analysis [C]// Proceedings of the 8th International Workshop on Semantic Evaluation. Dublin: Association for Computational Linguistics, 2014: 27–35.
|
|
|
[27] |
DONG L, WEI F, TAN C, et al. Adaptive recursive neural network for target-dependent twitter sentiment classification [C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore: Association for Computational Linguistics, 2014: 49–54.
|
|
|
[28] |
MRINI K, DERNONCOURT F, TRAN Q, et al. Rethinking self-attention: an interpretable self-attentive encoder-decoder parser [EB/OL]. (2020-10-29)[2022-04-01]. https://arxiv.org/pdf/1911.03875.pdf.
|
|
|
[29] |
PENNINGTON J, SOCHER R, MANNING C D. GloVe: global vectors for word representation [C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha: Association for Computational Linguistics, 2014: 1532-1543.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|