In aspect level sentiment analysis, existing methods struggle to effectively utilize the types of syntactic relations, and the performance of the model is affected by the accuracy of the dependency parsing. To resolve these challenges, an attention augmented relation gated graph convolutional network (ARGCN) model was proposed. The model uses a bidirectional long-short-term memory (BiLSTM) network to learn the sequential feature of sentences, and combines feature with the dependency probability matrix to construct a word graph. Then the model uses a relation gated graph convolutional network (RG-GCN) and an attention augmented network (AAN) to obtain the sentiment features of aspect words from the word graph and the sequential feature of sentences, respectively. Finally, the outputs of RG-GCN and AAN are concatenated as the final sentiment feature of aspect words. Contrastive experiments and ablation experiments were conducted on SemEval 2014 and Twitter datasets. And the results show that the ARGCN model can effectively utilize relation types, reduce the impact of dependency parsing accuracy on its performance, and better establish the connection between aspect words and opinion words. The model accuracy is better than all baseline models.
Fig.2Architecture of attention augmented relation gated graph convolutional network
Fig.3Comparison of dependency probability matrix and adjacency matrix
Fig.4Architecture of attention augmentation network
数据集
Ntr
Nte
正面
中性
负面
正面
中性
负面
Restaurant
2164
637
807
727
196
196
Laptop
976
455
851
337
167
128
Twitter
1507
3016
1528
172
336
169
Tab.1Sample label distribution for each dataset
%
模型
Restaurant
Laptop
Twitter
Acc
MF1
Acc
MF1
Acc
MF1
CDT
82.30
74.02
77.19
72.99
74.66
73.66
IGATs
82.32
73.99
76.02
72.05
75.29
73.40
R-GAT
83.30
76.08
77.42
73.76
75.57
73.82
DGEDT
83.90
75.10
76.80
72.30
74.80
73.40
DualGCN
84.27
78.08
78.48
74.74
75.92
74.29
ARGCN
84.63
78.14
79.27
75.68
76.07
74.58
ARGCN+BERT
86.60
77.73
81.01
77.73
77.10
76.07
Tab.2Comparison of classification accuracy and macro-F1 score of different models on three datasets
模型
Acc/%
Restaurant
Laptop
Twitter
GCN
82.31
75.95
74.59
RG-GCN
83.20
77.22
74.89
AAN
83.47
78.32
75.33
ARGCN
84.63
79.27
76.06
Tab.3Comparison of aspect-level sentiment analysis and prediction ablation experimental results
序号
例句
GCN
RG-GCN
AAN
ARGCN
1
The $\underline{{\rm{food}}}$ not worth the price.
P×
N√
N√
N√
2
The $\underline{{\rm{settings}}}$ are not user-friendly either.
P×
P×
N√
N√
3
I thought that is will be fine, if I do some $\underline{{\rm{settings}}}$.
O√
O√
P×
O√
Tab.4Examples from test dataset and predictions of each model
Fig.5Dependency tree and attention weight of example 2
模型
η/106
模型
η/106
CDT
0.41
RGAT
1.10
DualGCN
0.61
IGATs
1.81
ARGCN
0.64
DGEDT
2.15
Tab.5Number of trainable parameters for common models
Fig.6Performance of attention augmented relation gated graph convolutional network model varies with number of layers on three datasets
Fig.7Performance of attention augmented relation gated graph convolutional network model varies with regularization factors
[1]
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. (2017-02-22)[2022-04-01]. https://arxiv.org/pdf/1609.02907.pdf.
[2]
VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks [EB/OL]. (2018-02-04)[2022-04-01]. https://arxiv.org/pdf/1710.10903.pdf.
[3]
SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks [C]// European Semantic Web Conference. [S. l.]: Springer, 2018: 593-607.
[4]
KIRITCHENKO S, ZHU X, CHERRY C, et al. NRC-Canada-2014: detecting aspects and sentiment in customer reviews [C]// Proceedings of the 8th International Workshop on Semantic Evaluation. Dublin: Association for Computational Linguistics, 2014: 437-442.
[5]
WAGNER J, ARORA P, CORTES S, et al. DCU: aspect-based polarity classification for SemEval task 4 [C]// Proceedings of the 8th International Workshop on Semantic Evaluation. Dublin: Association for Computational Linguistics, 2014: 223–229.
[6]
TANG D, QIN B, LIU T. Aspect level sentiment classification with deep memory network [EB/OL]. (2016-09-24)[2022-04-01]. https://arxiv.org/pdf/1605.08900.pdf.
[7]
CHEN P, SUN Z, BING L, et al. Recurrent attention network on memory for aspect sentiment analysis [C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen: Association for Computational Linguistics, 2017: 452-461.
[8]
MA D, LI S, ZHANG X, et al. Interactive attention networks for aspect-level sentiment classification [EB/OL]. (2017-09-04)[2022-04-01].https://arxiv.org/pdf/1709.00893.pdf.
[9]
ZENG B, YANG H, XU R, et al LCF: a local context focus mechanism for aspect-based sentiment classification[J]. Applied Sciences, 2019, 9 (16): 3389
doi: 10.3390/app9163389
[10]
SONG Y, WANG J, JIANG T, et al. Attentional encoder network for targeted sentiment classification [EB/OL]. (2019-04-01)[2022-04-01]. https://arxiv.org/pdf/1902.09314.pdf.
[11]
XU Q, ZHU L, DAI T, et al Aspect-based sentiment classification with multi-attention network[J]. Neurocomputing, 2020, 388: 135- 143
doi: 10.1016/j.neucom.2020.01.024
[12]
SONG W, WEN Z, XIAO Z, et al Semantics perception and refinement network for aspect-based sentiment analysis[J]. Knowledge-Based Systems, 2021, 214: 106755
doi: 10.1016/j.knosys.2021.106755
[13]
宋威, 温子健 基于特征双重蒸馏网络的方面级情感分析[J]. 中文信息学报, 2021, 35 (7): 126- 133 SONG Wei, WEN Zi-jian Feature dual distillation network for aspect-based sentiment analysis[J]. Journal of Chinese Information Processing, 2021, 35 (7): 126- 133
[14]
毛腾跃, 郑志鹏, 郑禄 基于改进自注意力机制的方面级情感分析[J]. 中南民族大学学报:自然科学版, 2022, 41 (1): 94- 100 MAO Teng-yue, ZHENG Zhi-peng, ZHENG Lu Aspect-level sentiment analysis based on improved self-attention mechanism[J]. Journal of South-Central University for Nationalities: Natural Science Edition, 2022, 41 (1): 94- 100
[15]
SUN K, ZHANG R, MENSAH S, et al. Aspect-level sentiment analysis via convolution over dependency tree [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong: Association for Computational Linguistics, 2019: 5679-5688.
[16]
HUANG B, CARLEY K M. Syntax-aware aspect level sentiment classification with graph attention networks [EB/OL]. (2019-09-05)[2022-04-01]. https://arxiv.org/pdf/1909.02606.pdf.
[17]
ZHANG C, LI Q, SONG D. Aspect-based sentiment classification with aspect-specific graph convolutional networks [EB/OL]. (2019-10-13)[2022-04-01]. https://arxiv.org/pdf/1909.03477.pdf.
[18]
WANG K, SHEN W, YANG Y, et al. Relational graph attention network for aspect-based sentiment analysis [EB/OL]. (2020-04-26)[2022-04-01]. https://arxiv.org/pdf/2004.12362.pdf.
[19]
TANG H, JI D, LI C, et al. Dependency graph enhanced dual-transformer structure for aspect-based sentiment classification [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online: Association for Computational Linguistics, 2020: 6578-6588.
[20]
VASWANI A, SHAZEER N, PARMAR N, et al Attention is all you need[J]. Advances in Neural Information Processing systems, 2017, 30
[21]
LI R, CHEN H, FENG F, et al. Dual graph convolutional networks for aspect-based sentiment analysis [C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Online: Association for Computational Linguistics, 2021: 6319-6329.
[22]
LI Y, SUN X, WANG M. Embedding extra knowledge and a dependency tree based on a graph attention network for aspect-based sentiment analysis [C]// 2021 International Joint Conference on Neural Networks. Shenzhen: IEEE, 2021: 1-8.
[23]
张合桥, 苟刚, 陈青梅 基于图神经网络的方面级情感分析[J]. 计算机应用研究, 2021, 38 (12): 3574- 3580 ZHANG He-qiao, GOU Gang, CHEN Qing-mei Aspect-based sentiment analysis based on graph neural network[J]. Application Research of Computers, 2021, 38 (12): 3574- 3580
[24]
韩虎, 吴渊航, 秦晓雅 面向方面级情感分析的交互图注意力网络模型[J]. 电子与信息学报, 2021, 43 (11): 3282- 3290 HAN Hu, WU Yuan-hang, QIN Xiao-ya An interactive graph attention networks model for aspect-level sentiment analysis[J]. Journal of Electronics and Information Technology, 2021, 43 (11): 3282- 3290
[25]
夏鸿斌, 顾艳, 刘渊 面向特定方面情感分析的图卷积过度注意(ASGCN-AOA)模型[J]. 中文信息学报, 2022, 36 (3): 146- 153 XIA Hong-bin, GU Yan, LIU Yuan Graph convolution overattention(ASGCN-AOA) model for specific aspects of sentiment analysis[J]. Journal of Chinese Information Processing, 2022, 36 (3): 146- 153
[26]
PONTIKI M, GALANIS D, PAVLOPOULOS J, et al, SemEval-2014 task 4: aspect based sentiment analysis [C]// Proceedings of the 8th International Workshop on Semantic Evaluation. Dublin: Association for Computational Linguistics, 2014: 27–35.
[27]
DONG L, WEI F, TAN C, et al. Adaptive recursive neural network for target-dependent twitter sentiment classification [C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore: Association for Computational Linguistics, 2014: 49–54.
[28]
MRINI K, DERNONCOURT F, TRAN Q, et al. Rethinking self-attention: an interpretable self-attentive encoder-decoder parser [EB/OL]. (2020-10-29)[2022-04-01]. https://arxiv.org/pdf/1911.03875.pdf.
[29]
PENNINGTON J, SOCHER R, MANNING C D. GloVe: global vectors for word representation [C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha: Association for Computational Linguistics, 2014: 1532-1543.