|
|
Traffic flow data repair method based on spatial-temporal fusion graph convolution |
Yue HOU( ),Cheng-yan HAN,Xin ZHENG,Zhi-yuan DENG |
School of Electronics and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China |
|
|
Abstract A missing data repair method based on spatio-temporal fusion graph convolutional network was proposed in order to solve the problem of insufficient traffic flow characteristics mining by existing spatio-temporal correlation repair method. Two types of functions were used to respectively calculate the temporal autocorrelation coefficient and spatial correlation coefficient of traffic flow data by analyzing the spatio-temporal characteristics of traffic flow. The deployment position of the traffic detector was used as a node to form a geometric topology graph, and a spatio-temporal fusion matrix was constructed by linear fusion rules, which replaced the adjacency matrix of the graph convolution input layer to capture the fine-grained spatio-temporal relationship of the traffic flow. The lightweight one-dimensional convolution layer was used to learn the temporal characteristics of multi-channel time series vectors in order to speed up the convergence speed of the model. The graph convolutional layer was used to learn the spatial characteristics of traffic flow data. A spatio-temporal fusion graph convolution network repair model was constructed. The experimental results show that the repair accuracy and model convergence speed of the method in multi-detector scenarios were improved compared with other repair methods, which can effectively repair the missing traffic flow data.
|
Received: 25 October 2021
Published: 26 July 2022
|
|
Fund: 国家自然科学基金资助项目(62063014);甘肃省自然基金资助项目(20JR5RA407);甘肃省教育科技创新项目(2021CYZC-04);兰州交通大学“百名青年优秀人才培养计划”基金资助项目(1520220227) |
基于时空融合图卷积的交通流数据修复方法
为了解决现有时空相关修复法挖掘交通流特性不充分的问题,提出基于时空融合图卷积网络的缺失数据修复方法. 该方法在分析交通流时空特性的基础上,采用2类函数分别计算交通流数据的时间自相关系数和空间关联度系数. 将交通检测器的部署位置作为节点构成几何拓扑图,通过线性融合规则构建时空融合矩阵,替代图卷积输入层的邻接矩阵,捕获交通流细粒化的时空关系. 利用轻量级一维卷积层学习多通道时序向量的时间特征,加快模型的收敛速度. 利用图卷积层学习交通流数据的空间特征,构建时空融合图卷积网络修复模型. 实验结果表明,与其他修复方法相比,该方法在多检测器场景中的修复精度和模型收敛速度均有所提升,可以有效地修复交通流缺失数据.
关键词:
交通工程,
时空融合,
交通流数据修复,
图卷积网络,
一维卷积
|
|
[1] |
TANG J, ZHANG G, WANG Y, et al A hybrid approach to integrate fuzzy C-means based imputation method with genetic algorithm for missing traffic volume data estimation[J]. Transportation Research Part C: Emerging Technologies, 2015, 51: 29- 40
doi: 10.1016/j.trc.2014.11.003
|
|
|
[2] |
QU L, ZHANG Y, HU J, et al. A BPCA based missing value imputing method for traffic flow volume data [C]//2008 IEEE Intelligent Vehicles Symposium. Netherlands: IEEE, 2008: 985-990.
|
|
|
[3] |
QU L, LI L, ZHANG Y, et al PPCA-based missing data imputation for traffic flow volume: a systematical approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10 (3): 512- 522
doi: 10.1109/TITS.2009.2026312
|
|
|
[4] |
陆文琦, 周天, 谷远利, 等 基于张量分解理论的车道级交通流数据修复算法[J]. 吉林大学学报: 工学版, 2021, 51 (5): 1708- 1715 LU Wen-qi, ZHOU Tian, GU Yuan-li, et al Lane-level traffic flow data restoration algorithm based on tensor decomposition theory[J]. Journal of Jilin University: Engineering and Technology Edition, 2021, 51 (5): 1708- 1715
|
|
|
[5] |
陆化普, 屈闻聪, 孙智源 基于S-G滤波的交通流故障数据识别与修复算法[J]. 土木工程学报, 2015, 48 (5): 123- 128 LU Hua-pu, QU Wen-cong, SUN Zhi-yuan Traffic flow fault data identification and repair algorithm based on S-G filtering[J]. Journal of Civil Engineering, 2015, 48 (5): 123- 128
|
|
|
[6] |
邵毅明, 甘元艺, 侯雨彤, 等 基于交通流数据修复的GA-RF方法研究[J]. 重庆理工大学学报:自然科学, 2021, 35 (6): 29- 36 SHAO Yi-ming, GAN Yuan-yi, HOU Yu-tong, et al Research on GA-RF method based on traffic flow data restoration[J]. Journal of Chongqing University of Technology: Natural Science, 2021, 35 (6): 29- 36
|
|
|
[7] |
姜桂艳, 冮龙晖, 张晓东, 等 动态交通数据故障识别与修复方法[J]. 交通运输工程学报, 2004, (1): 121- 125 JIANG Gui-yan, YU long-hui, ZHANG Xiao-dong, et al Fault identification and repair methods of dynamic traffic data[J]. Journal of Transportation Engineering, 2004, (1): 121- 125
doi: 10.3321/j.issn:1671-1637.2004.01.030
|
|
|
[8] |
徐程, 曲昭伟, 陶鹏飞, 等 动态交通数据异常值的实时筛选与恢复方法[J]. 哈尔滨工程大学学报, 2016, 37 (2): 211- 217 XU Cheng, QU Zhao-wei, TAO Peng-fei, et al Real time screening and recovery method of outliers of dynamic traffic data[J]. Journal of Harbin Engineering University, 2016, 37 (2): 211- 217
|
|
|
[9] |
孟鸿程, 陈淑燕 交通流缺失数据处理方法比较分析[J]. 交通信息与安全, 2018, 36 (2): 61- 67 MENG Hong-cheng, CHEN Shu-yan Comparative analysis of missing data processing methods in traffic flow[J]. Traffic Information and Safety, 2018, 36 (2): 61- 67
doi: 10.3963/j.issn.1674-4861.2018.02.009
|
|
|
[10] |
郭敏, 蓝金辉, 李娟娟, 等 基于灰色残差GM(1, N)模型的交通流数据恢复算法[J]. 交通运输系统工程与信息, 2012, 12 (1): 42- 47 GUO Min, LAN Jin-hui, LI Juan-juan, et al Traffic flow data recovery algorithm based on grey residual GM(1, N) model[J]. Transportation System Engineering and Information, 2012, 12 (1): 42- 47
doi: 10.3969/j.issn.1009-6744.2012.01.008
|
|
|
[11] |
陆百川, 张冬梅, 舒芹, 等 基于时空特性和灰色残差的交通故障数据诊断与修复[J]. 重庆交通大学学报:自然科学版, 2020, 39 (9): 8- 16 LU Bai-chuan, ZHANG Dong-mei, SHU Qin, et al Traffic fault data diagnosis and repair based on temporal and spatial characteristics and grey residual[J]. Journal of Chongqing Jiaotong University: Natural Science Edition, 2020, 39 (9): 8- 16
|
|
|
[12] |
王薇, 程泽阳, 刘梦依, 等 基于时空相关性的交通流故障数据修复方法[J]. 浙江大学学报:工学版, 2017, 51 (9): 1727- 1734 WANG Wei, CHENG Ze-yang, LIU Meng-yi, et al Traffic flow fault data repair method based on spatio-temporal correlation[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (9): 1727- 1734
|
|
|
[13] |
WANG X, MA Y, WANG Y, et al. Traffic flow prediction via spatial temporal graph neural network [C]// Proceedings of the Web Conference. Taiwan: [s. n. ], 2020: 1082-1092.
|
|
|
[14] |
张伟斌, 张蒲璘, 苏子毅, 等 基于自注意力机制与图自编码器的路网交通流数据修复模型[J]. 交通运输系统工程与信息, 2021, 21 (4): 90- 98 ZHANG Wei-bin, ZHANG Pu-lin, SU Zi-yi, et al Road network traffic flow data restoration model based on self-attention mechanism and graph autoencoder[J]. Transportation System Engineering and Information, 2021, 21 (4): 90- 98
|
|
|
[15] |
陆化普, 孙智源, 屈闻聪 基于时空模型的交通流故障数据修正方法[J]. 交通运输工程学报, 2015, 15 (6): 92- 100 LU Hua-pu, SUN Zhi-yuan, QU Wen-cong Traffic flow fault data correction method based on spatio-temporal model[J]. Journal of Transportation Engineering, 2015, 15 (6): 92- 100
doi: 10.3969/j.issn.1671-1637.2015.06.012
|
|
|
[16] |
张程瀚. 城市快速路交通流数据质量评价及修复方法研究[D]. 北京: 北京交通大学, 2019. ZHANG Cheng-han. Research on data quality evaluation and restoration methods of urban expressway traffic flow [D]. Beijing: Beijing Jiaotong University, 2019.
|
|
|
[17] |
ZHAO L, SONG Y, ZHANG C, et al T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21 (9): 3848- 3858
|
|
|
[18] |
ZHANG Z, CUI P, ZHU W Deep learning on graphs: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34 (1): 249- 270
|
|
|
[19] |
赵康宁, 蒲天骄, 王新迎, 等 基于改进贝叶斯神经网络的光伏出力概率预测[J]. 电网技术, 2019, 43 (12): 4377- 4386 ZHAO Kang-ning, PU Tian-jiao, WANG Xin-ying, et al Forecast of photovoltaic output probability based on improved Bayesian neural network[J]. Power System Technology, 2019, 43 (12): 4377- 4386
|
|
|
[20] |
陈喜群, 周凌霄, 曹震 基于图卷积网络的路网短时交通流预测研究[J]. 交通运输系统工程与信息, 2020, 20 (4): 49- 55 CHEN Xi-qun, ZHOU Ling-xiao, CAO Zhen Research on short-term traffic flow prediction of road network based on graph convolution network[J]. Transportation System Engineering and Information, 2020, 20 (4): 49- 55
|
|
|
[21] |
陈丹蕾, 陈红, 任安虎 考虑时空影响下的图卷积网络短时交通流预测[J]. 计算机工程与应用, 2021, 57 (13): 269- 275 CHEN Dan-lei, CHEN Hong, REN An-hu Short-term traffic flow prediction of graph convolutional network considering the influence of time and space[J]. Computer Engineering and Applications, 2021, 57 (13): 269- 275
doi: 10.3778/j.issn.1002-8331.2006-0175
|
|
|
[22] |
闫旭, 范晓亮, 郑传潘, 等 基于图卷积神经网络的城市交通态势预测算法[J]. 浙江大学学报: 工学版, 2020, 54 (6): 1147- 1155 YAN Xu, FAN Xiao-liang, ZHENG Chuan-pan, et al Urban traffic situation prediction algorithm based on graph convolution neural network[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (6): 1147- 1155
|
|
|
[23] |
DANEL T, SPUREK P, TABOR J, et al. Spatial graph convolutional networks [C]// International Conference on Neural Information Processing. Cham: Springer, 2020: 668-675.
|
|
|
[24] |
BRONSTEIN M M, BRUNA J, LECUN Y, et al Geometric deep learning: going beyond Euclidean data[J]. IEEE Signal Processing Magazine, 2017, 34 (4): 18- 42
doi: 10.1109/MSP.2017.2693418
|
|
|
[25] |
陈华伟, 邵毅明, 敖谷昌, 等 面向在线地图的GCN-LSTM神经网络速度预测[J]. 交通运输工程学报, 2021, 21 (4): 183- 196 CHEN Hua-wei, SHAO Yi-ming, AO Gu-chang, et al GCN-LSTM neural network speed prediction for online maps[J]. Journal of Traffic and Transportation Engineering, 2021, 21 (4): 183- 196
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|