Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (7): 1394-1403    DOI: 10.3785/j.issn.1008-973X.2022.07.015
    
Traffic flow data repair method based on spatial-temporal fusion graph convolution
Yue HOU(),Cheng-yan HAN,Xin ZHENG,Zhi-yuan DENG
School of Electronics and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
Download: HTML     PDF(2624KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A missing data repair method based on spatio-temporal fusion graph convolutional network was proposed in order to solve the problem of insufficient traffic flow characteristics mining by existing spatio-temporal correlation repair method. Two types of functions were used to respectively calculate the temporal autocorrelation coefficient and spatial correlation coefficient of traffic flow data by analyzing the spatio-temporal characteristics of traffic flow. The deployment position of the traffic detector was used as a node to form a geometric topology graph, and a spatio-temporal fusion matrix was constructed by linear fusion rules, which replaced the adjacency matrix of the graph convolution input layer to capture the fine-grained spatio-temporal relationship of the traffic flow. The lightweight one-dimensional convolution layer was used to learn the temporal characteristics of multi-channel time series vectors in order to speed up the convergence speed of the model. The graph convolutional layer was used to learn the spatial characteristics of traffic flow data. A spatio-temporal fusion graph convolution network repair model was constructed. The experimental results show that the repair accuracy and model convergence speed of the method in multi-detector scenarios were improved compared with other repair methods, which can effectively repair the missing traffic flow data.



Key wordstraffic engineering      spatio-temporal fusion      traffic flow data repair      graph convolutional network      one-dimensional convolution     
Received: 25 October 2021      Published: 26 July 2022
CLC:  U 491  
Fund:  国家自然科学基金资助项目(62063014);甘肃省自然基金资助项目(20JR5RA407);甘肃省教育科技创新项目(2021CYZC-04);兰州交通大学“百名青年优秀人才培养计划”基金资助项目(1520220227)
Cite this article:

Yue HOU,Cheng-yan HAN,Xin ZHENG,Zhi-yuan DENG. Traffic flow data repair method based on spatial-temporal fusion graph convolution. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1394-1403.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.07.015     OR     https://www.zjujournals.com/eng/Y2022/V56/I7/1394


基于时空融合图卷积的交通流数据修复方法

为了解决现有时空相关修复法挖掘交通流特性不充分的问题,提出基于时空融合图卷积网络的缺失数据修复方法. 该方法在分析交通流时空特性的基础上,采用2类函数分别计算交通流数据的时间自相关系数和空间关联度系数. 将交通检测器的部署位置作为节点构成几何拓扑图,通过线性融合规则构建时空融合矩阵,替代图卷积输入层的邻接矩阵,捕获交通流细粒化的时空关系. 利用轻量级一维卷积层学习多通道时序向量的时间特征,加快模型的收敛速度. 利用图卷积层学习交通流数据的空间特征,构建时空融合图卷积网络修复模型. 实验结果表明,与其他修复方法相比,该方法在多检测器场景中的修复精度和模型收敛速度均有所提升,可以有效地修复交通流缺失数据.


关键词: 交通工程,  时空融合,  交通流数据修复,  图卷积网络,  一维卷积 
Fig.1 Time correlation analysis of traffic flow of detect_0 in working days
检测器 $ r $ 检测器 $r $
detect_0 0.87 detect_3 0.88
detect_1 0.88 detect_4 0.86
detect_2 0.85
Tab.1 Autocorrelation analysis results of traffic flow of detect_0 on working days
时间点 周一 周二 周三 周四 周五
周一 1.00 0.90 0.66 0.75 0.77
周二 0.90 1.00 0.41 0.50 0.53
周三 0.66 0.41 1.00 0.90 0.89
周四 0.75 0.50 0.90 1.00 0.97
周五 0.77 0.53 0.89 0.97 1.00
Tab.2 Correlation analysis results of traffic flow of detect_0 on working days
Fig.2 Spatial correlation analysis of traffic flow of multi-detector
检测器 detect_0 detect_1 detect_2 detect_3 detect_4
detect_0 1.00 0.85 0.78 0.94 0.85
detect_1 0.85 1.00 0.87 0.87 0.93
detect_2 0.78 0.87 1.00 0.81 0.85
detect_3 0.94 0.87 0.81 1.00 0.86
detect_4 0.85 0.93 0.85 0.86 1.00
Tab.3 Spatial correlation coefficient of traffic flow of multi-detector
Fig.3 Connection diagram of spatial-temporal fusion weight
Fig.4 Structure diagram of 1D-CNN network
Fig.5 Frame diagram of STF_GCN repair model
lr bt MAE RMSE
8×l0?4 32 31.517 35.689
8×l0?4 64 25.926 30.926
8×l0?4 128 25.935 32.121
l0?3 32 30.438 34.633
l0?3 64 24.981 29.952
l0?3 128 26.505 32.489
1.2×l0?3 32 25.542 31.490
1.2×l0?3 64 25.520 30.561
1.2×l0?3 128 25.542 31.490
Tab.4 STF_ GCN model parameters
检测器 detect_0 detect_1 detect_2 ··· detect_m-1 detect_m
detect_0 0.8742 0 0 ··· 0 0
detect_1 0 0.8827 0.8712 ··· 0 0
detect_2 0 0 0.8523 ··· 0 0
$\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $
detect_m-1 0 0 0 ··· 0.8677 0
detect_m 0 0 0 ··· 0 0.7901
Tab.5 Correlation analysis results of spatial-temporal fusion matrix
Fig.6 Repair results of different methods on multiple detectors
Fig.7 Comparison of repair errors of different methods on multiple detectors
检测器 GCN LGCN 1D-CNN_GCN LSTM_GCN STF_GCN
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
detect_28 19.42 21.97 18.26 20.93 17.46 20.56 19.54 22.13 12.38 14.77
detect_50 11.54 13.59 11.31 13.27 13.16 15.11 12.29 14.47 8.61 10.74
detect_55 17.50 20.58 17.12 20.05 19.76 22.7 18.45 21.72 12.89 16.08
detect_62 5.80 6.84 5.69 6.66 6.65 7.63 6.17 7.26 4.30 5.36
$\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $
PeMS08 26.77 31.69 28.38 33.40 28.72 33.85 25.65 30.52 24.98 29.95
Tab.6 Comparison of repair errors of different methods
模型 tc 模型 tc
GCN 207.6 LSTM_GCN 589.1
LCGN 191.3 STF_GCN 162.3
ID-GNN_GCN 162.6
Tab.7 Comparison of convergence speed of model s
[1]   TANG J, ZHANG G, WANG Y, et al A hybrid approach to integrate fuzzy C-means based imputation method with genetic algorithm for missing traffic volume data estimation[J]. Transportation Research Part C: Emerging Technologies, 2015, 51: 29- 40
doi: 10.1016/j.trc.2014.11.003
[2]   QU L, ZHANG Y, HU J, et al. A BPCA based missing value imputing method for traffic flow volume data [C]//2008 IEEE Intelligent Vehicles Symposium. Netherlands: IEEE, 2008: 985-990.
[3]   QU L, LI L, ZHANG Y, et al PPCA-based missing data imputation for traffic flow volume: a systematical approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10 (3): 512- 522
doi: 10.1109/TITS.2009.2026312
[4]   陆文琦, 周天, 谷远利, 等 基于张量分解理论的车道级交通流数据修复算法[J]. 吉林大学学报: 工学版, 2021, 51 (5): 1708- 1715
LU Wen-qi, ZHOU Tian, GU Yuan-li, et al Lane-level traffic flow data restoration algorithm based on tensor decomposition theory[J]. Journal of Jilin University: Engineering and Technology Edition, 2021, 51 (5): 1708- 1715
[5]   陆化普, 屈闻聪, 孙智源 基于S-G滤波的交通流故障数据识别与修复算法[J]. 土木工程学报, 2015, 48 (5): 123- 128
LU Hua-pu, QU Wen-cong, SUN Zhi-yuan Traffic flow fault data identification and repair algorithm based on S-G filtering[J]. Journal of Civil Engineering, 2015, 48 (5): 123- 128
[6]   邵毅明, 甘元艺, 侯雨彤, 等 基于交通流数据修复的GA-RF方法研究[J]. 重庆理工大学学报:自然科学, 2021, 35 (6): 29- 36
SHAO Yi-ming, GAN Yuan-yi, HOU Yu-tong, et al Research on GA-RF method based on traffic flow data restoration[J]. Journal of Chongqing University of Technology: Natural Science, 2021, 35 (6): 29- 36
[7]   姜桂艳, 冮龙晖, 张晓东, 等 动态交通数据故障识别与修复方法[J]. 交通运输工程学报, 2004, (1): 121- 125
JIANG Gui-yan, YU long-hui, ZHANG Xiao-dong, et al Fault identification and repair methods of dynamic traffic data[J]. Journal of Transportation Engineering, 2004, (1): 121- 125
doi: 10.3321/j.issn:1671-1637.2004.01.030
[8]   徐程, 曲昭伟, 陶鹏飞, 等 动态交通数据异常值的实时筛选与恢复方法[J]. 哈尔滨工程大学学报, 2016, 37 (2): 211- 217
XU Cheng, QU Zhao-wei, TAO Peng-fei, et al Real time screening and recovery method of outliers of dynamic traffic data[J]. Journal of Harbin Engineering University, 2016, 37 (2): 211- 217
[9]   孟鸿程, 陈淑燕 交通流缺失数据处理方法比较分析[J]. 交通信息与安全, 2018, 36 (2): 61- 67
MENG Hong-cheng, CHEN Shu-yan Comparative analysis of missing data processing methods in traffic flow[J]. Traffic Information and Safety, 2018, 36 (2): 61- 67
doi: 10.3963/j.issn.1674-4861.2018.02.009
[10]   郭敏, 蓝金辉, 李娟娟, 等 基于灰色残差GM(1, N)模型的交通流数据恢复算法[J]. 交通运输系统工程与信息, 2012, 12 (1): 42- 47
GUO Min, LAN Jin-hui, LI Juan-juan, et al Traffic flow data recovery algorithm based on grey residual GM(1, N) model[J]. Transportation System Engineering and Information, 2012, 12 (1): 42- 47
doi: 10.3969/j.issn.1009-6744.2012.01.008
[11]   陆百川, 张冬梅, 舒芹, 等 基于时空特性和灰色残差的交通故障数据诊断与修复[J]. 重庆交通大学学报:自然科学版, 2020, 39 (9): 8- 16
LU Bai-chuan, ZHANG Dong-mei, SHU Qin, et al Traffic fault data diagnosis and repair based on temporal and spatial characteristics and grey residual[J]. Journal of Chongqing Jiaotong University: Natural Science Edition, 2020, 39 (9): 8- 16
[12]   王薇, 程泽阳, 刘梦依, 等 基于时空相关性的交通流故障数据修复方法[J]. 浙江大学学报:工学版, 2017, 51 (9): 1727- 1734
WANG Wei, CHENG Ze-yang, LIU Meng-yi, et al Traffic flow fault data repair method based on spatio-temporal correlation[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (9): 1727- 1734
[13]   WANG X, MA Y, WANG Y, et al. Traffic flow prediction via spatial temporal graph neural network [C]// Proceedings of the Web Conference. Taiwan: [s. n. ], 2020: 1082-1092.
[14]   张伟斌, 张蒲璘, 苏子毅, 等 基于自注意力机制与图自编码器的路网交通流数据修复模型[J]. 交通运输系统工程与信息, 2021, 21 (4): 90- 98
ZHANG Wei-bin, ZHANG Pu-lin, SU Zi-yi, et al Road network traffic flow data restoration model based on self-attention mechanism and graph autoencoder[J]. Transportation System Engineering and Information, 2021, 21 (4): 90- 98
[15]   陆化普, 孙智源, 屈闻聪 基于时空模型的交通流故障数据修正方法[J]. 交通运输工程学报, 2015, 15 (6): 92- 100
LU Hua-pu, SUN Zhi-yuan, QU Wen-cong Traffic flow fault data correction method based on spatio-temporal model[J]. Journal of Transportation Engineering, 2015, 15 (6): 92- 100
doi: 10.3969/j.issn.1671-1637.2015.06.012
[16]   张程瀚. 城市快速路交通流数据质量评价及修复方法研究[D]. 北京: 北京交通大学, 2019.
ZHANG Cheng-han. Research on data quality evaluation and restoration methods of urban expressway traffic flow [D]. Beijing: Beijing Jiaotong University, 2019.
[17]   ZHAO L, SONG Y, ZHANG C, et al T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21 (9): 3848- 3858
[18]   ZHANG Z, CUI P, ZHU W Deep learning on graphs: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34 (1): 249- 270
[19]   赵康宁, 蒲天骄, 王新迎, 等 基于改进贝叶斯神经网络的光伏出力概率预测[J]. 电网技术, 2019, 43 (12): 4377- 4386
ZHAO Kang-ning, PU Tian-jiao, WANG Xin-ying, et al Forecast of photovoltaic output probability based on improved Bayesian neural network[J]. Power System Technology, 2019, 43 (12): 4377- 4386
[20]   陈喜群, 周凌霄, 曹震 基于图卷积网络的路网短时交通流预测研究[J]. 交通运输系统工程与信息, 2020, 20 (4): 49- 55
CHEN Xi-qun, ZHOU Ling-xiao, CAO Zhen Research on short-term traffic flow prediction of road network based on graph convolution network[J]. Transportation System Engineering and Information, 2020, 20 (4): 49- 55
[21]   陈丹蕾, 陈红, 任安虎 考虑时空影响下的图卷积网络短时交通流预测[J]. 计算机工程与应用, 2021, 57 (13): 269- 275
CHEN Dan-lei, CHEN Hong, REN An-hu Short-term traffic flow prediction of graph convolutional network considering the influence of time and space[J]. Computer Engineering and Applications, 2021, 57 (13): 269- 275
doi: 10.3778/j.issn.1002-8331.2006-0175
[22]   闫旭, 范晓亮, 郑传潘, 等 基于图卷积神经网络的城市交通态势预测算法[J]. 浙江大学学报: 工学版, 2020, 54 (6): 1147- 1155
YAN Xu, FAN Xiao-liang, ZHENG Chuan-pan, et al Urban traffic situation prediction algorithm based on graph convolution neural network[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (6): 1147- 1155
[23]   DANEL T, SPUREK P, TABOR J, et al. Spatial graph convolutional networks [C]// International Conference on Neural Information Processing. Cham: Springer, 2020: 668-675.
[24]   BRONSTEIN M M, BRUNA J, LECUN Y, et al Geometric deep learning: going beyond Euclidean data[J]. IEEE Signal Processing Magazine, 2017, 34 (4): 18- 42
doi: 10.1109/MSP.2017.2693418
[25]   陈华伟, 邵毅明, 敖谷昌, 等 面向在线地图的GCN-LSTM神经网络速度预测[J]. 交通运输工程学报, 2021, 21 (4): 183- 196
CHEN Hua-wei, SHAO Yi-ming, AO Gu-chang, et al GCN-LSTM neural network speed prediction for online maps[J]. Journal of Traffic and Transportation Engineering, 2021, 21 (4): 183- 196
[1] Ce GUO,Zhi-wen ZENG,Peng-ming ZHU,Zhi-qian ZHOU,Hui-min LU. Decentralized swarm control based on graph convolutional imitation learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1055-1061.
[2] You-wei WANG,Shuang TONG,Li-zhou FENG,Jian-ming ZHU,Yang LI,Fu CHEN. New inductive microblog rumor detection method based on graph convolutional network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 956-966.
[3] Jia-jie YU,Yan-jie JI,Qing BU,Yue-biao ZHENG. Partitioned green-wave control scheme for long arterial considering breakpoint cost[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 640-648.
[4] Ting WANG,Xiao-fei ZHU,Gu TANG. Knowledge-enhanced graph convolutional neural networks for text classification[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 322-328.
[5] Ning-bo CAO,Li-ying ZHAO. Decision-making method of autonomous vehicles for right of way on road segments[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 118-127.
[6] Zhong-yu WANG,Ling WANG,Yan-li WANG,Bing WU. Traffic congestion prevention method during large-scale special events based on variable network topology optimization[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 358-366.
[7] Kai LU,Xin TIAN,Guan-rong LIN,Xing-dong DENG. Simultaneous optimization model of signal phase design and timing at intersection[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 921-930.
[8] Hai-jin WANG,Zong-yu YIN,Zhen-zheng KE,Ying-jie GUO,Hui-yue DONG. Wear monitoring of helical milling tool based on one-dimensional convolutional neural network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 931-939.
[9] Lie-jun JIN,Jian-ming ZHAN,Jun-hua CHEN,Tao WANG. Drill pipe fault diagnosis method based on one-dimensional convolutional neural network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 467-474.
[10] Jia-qi ZENG,Dian-hai WANG. Improved numerical method for two-way arterial signal coordinate control[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2386-2394.
[11] Si-jia ZHANG,Shun-ping JIA,Bao-hua MAO,Cun-rui MA,Tong ZHANG. Influence of passenger trip distance distribution on competitiveness of bus lines in urban rail transit network[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 292-298.
[12] Si CHEN,Xiao-dong CAI,Zhen-zhen HOU,Bo LI. Aggregate graph embedding method based on non-uniform neighbor nodes sampling[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2163-2167.
[13] GONG Yue, LUO Xiao-Qin, WANG Dian-hai, YANG Shao-hui. Urban travel time prediction based on gradient boosting regression tress[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 453-460.
[14] SHANG Qiang, LIN Ci-yun, YANG Zhao-sheng, BING Qi-chun, XING Ru-ru. Traffic incident detection based on variable selection and kernel extreme learning machine[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1339-1346.
[15] WANG Han qi, CHEN Hong, FENG Wei, LIU Wei wei. Multi-dimensional travel decision model of heterogeneous commuters based on Cumulative Prospect Theory[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 297-303.