Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (7): 1385-1393    DOI: 10.3785/j.issn.1008-973X.2022.07.014
    
Numerical model for groundwater flow simulation in unconfined aquifer with arbitrary polygon grids
Yu-long GAO1,2(),Zhi-jie LIU3,Yu HAN2,Shu-ping YI2,*()
1. School of Environment, Harbin Institute of Technology, Harbin 150090, China
2. School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
3. Shenzhen Sustech Environmental Incorporation, Shenzhen 518055, China
Download: HTML     PDF(2750KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An improved groundwater flow model was developed by using the multipoint flux approximation method in order to improve the flexibility of discretizing aquifers for groundwater flow numerical model in unconfined aquifer. The arbitrary-shaped polygon grids were used to discretize the aquifer. The availability of the new model was verified by comparing the output between our model and MODFLOW in four cases. Results showed that the calculation results of the new model accorded well with the results of MODFLOW model. All the root mean square errors calculated by the new models were smaller than those of MODFLOW models in real watershed cases with complex boundaries, which indicated that the new model performed better than MODFLOW. The research results show that the new model has the potential to simulate groundwater flow processes in the unconfined aquifer with complex boundaries.



Key wordsgroundwater flow model      arbitrary polygon grid      finite volume scheme      multipoint flux approximation      unconfined aquifer     
Received: 27 August 2021      Published: 26 July 2022
CLC:  P 641  
Fund:  国家自然科学基金资助项目(41877193);深圳市高层次人才科研启动经费资助项目(Y01296126)
Corresponding Authors: Shu-ping YI     E-mail: gyulong@qq.com;yisp@sustech.edu.cn
Cite this article:

Yu-long GAO,Zhi-jie LIU,Yu HAN,Shu-ping YI. Numerical model for groundwater flow simulation in unconfined aquifer with arbitrary polygon grids. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1385-1393.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.07.014     OR     https://www.zjujournals.com/eng/Y2022/V56/I7/1385


任意多边形网格剖分的潜水层水流模型

为了提高潜水含水层水流数值模型网格剖分的灵活性,利用多点通量近似方法,建立适用于任意多边形网格剖分的潜水层水流数值模型. 通过4个案例验证模型的有效性,将新模型与通用软件MODFLOW的模拟结果进行对比. 结果显示,新模型计算结果与MODFLOW的结果有良好的一致性. 在具有复杂边界形状的案例中,新模型的均方根误差均小于对应的MODFLOW的均方根误差,说明使用任意多边形网格剖分的新模型表现优于MODFLOW模型. 研究结果表明,新模型有潜力应用于具有复杂边界形状的潜水层的水流过程模拟.


关键词: 地下水流模型,  任意多边形网格,  有限体积法,  多点通量近似,  潜水含水层 
Fig.1 Notations around pointA
Fig.2 Discretization of aquifer using irregular grids and regular grids
Fig.3 Comparison of simulation results at different time
Fig.4 Comparison of simulation results at x = 75 m with time variation
Fig.5 Comparison of model simulation results at different time
Fig.6 Input of Xinqiao River Basin model
Fig.7 Comparison of results simulated by new model, MODFLOW and reference model
Fig.8 Comparison of model simulation results at different time
Fig.9 Input of Pinggu Basin model
Fig.10 Comparison of results simulated by new model, MODFLOW and reference model
Fig.11 Comparison of model simulation results at different time
[1]   任杰, 程嘉强, 杨杰, 等. 潜流交换温度示踪方法研究进展[J]. 水科学进展. 2018, 29(4): 597-606.
REN Jie, CHENG Jia-qiang, YANG Jie, et al. Advances in temperature tracer method of hyporheic exchange [J]. Advances in Water Science, 2018, 29(4): 597-606.
[2]   陈飞, 徐翔宇, 羊艳, 等 中国地下水资源演变趋势及影响因素分析[J]. 水科学进展, 2020, 31 (6): 811- 819
CHEN Fei, XU Xiang-yu, YANG Yan, et al Investigation on the evolution trends and influencing factors of groundwater resources in China[J]. Advances in Water Science, 2020, 31 (6): 811- 819
[3]   MCDONALD M G, HARBAUGH A W. A modular three-dimensional finite-difference ground-water flow model [M]. Reston: US Geological Survey, 1988.
[4]   HARBAUGH A W. MODFLOW-2005, the US geological survey modular ground-water model: the ground-water flow process[M]. Reston: US Geological Survey, 2005.
[5]   MA L, HE C, BIAN H, et al MIKE SHE modeling of ecohydrological processes: Merits, applications, and challenges[J]. Ecological Engineering, 2016, 96: 137- 149
doi: 10.1016/j.ecoleng.2016.01.008
[6]   TREFRY M G, MUFFELS C FEFLOW: a finite-element ground water flow and transport modeling tool[J]. Ground Water, 2010, 45 (5): 525- 528
[7]   AAVATSMARK I An introduction to multipoint flux approximations for quadrilateral grids[J]. Computational Geosciences, 2002, 6 (3): 405- 432
[8]   AAVATSMARK I, EIGESTAD G T, KLAUSEN R A. Numerical convergence of the MPFA O-method for general quadrilateral grids in two and three dimensions [M]. New York: Springer, 2006: 1-21.
[9]   AAVATSMARK I, BARKVE T, MANNSETH T Control-volume discretization methods for 3D quadrilateral grids in inhomogeneous, anisotropic reservoirs[J]. SPE Journal, 1998, 3 (2): 146- 154
doi: 10.2118/38000-PA
[10]   AAVATSMARK I, BARKVE T, BØE Ø, et al Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media[J]. Journal of Computational Physics, 1996, 127 (1): 2- 14
doi: 10.1006/jcph.1996.0154
[11]   EDWARDS M G Unstructured, control-volume distributed, full-tensor finite-volume schemes with flow based grids[J]. Computational Geosciences, 2002, 6 (3/4): 433- 452
doi: 10.1023/A:1021243231313
[12]   YOUNES A, FAHS M, BELFORT B Monotonicity of the cell-centred triangular MPFA method for saturated and unsaturated flow in heterogeneous porous media[J]. Journal of Hydrology, 2013, 504: 132- 141
doi: 10.1016/j.jhydrol.2013.09.041
[13]   YOUNES A, MAKRADI A, ZIDANE A, et al A combination of Crouzeix-Raviart, discontinuous Galerkin and MPFA methods for buoyancy-driven flows[J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2014, 24 (3): 735- 759
doi: 10.1108/HFF-07-2012-0156
[14]   DRONIOU J, POTIER C L Construction and convergence study of schemes preserving the elliptic local maximum principle[J]. SIAM Journal on Numerical Analysis, 2011, 49 (2): 459- 490
doi: 10.1137/090770849
[15]   AAVATSMARK I, EIGESTAD G T, KLAUSEN R A, et al Convergence of a symmetric MPFA method on quadrilateral grids[J]. Computational Geosciences, 2007, 11 (4): 333- 345
doi: 10.1007/s10596-007-9056-8
[16]   KLAUSEN R A, RUSSELL T F Relationships among some locally conservative discretization methods which handle discontinuous coefficients[J]. Computational Geosciences, 2004, 8 (4): 341- 377
doi: 10.1007/s10596-005-1815-9
[17]   KLAUSEN R A, RADU F A, EIGESTAD G T Convergence of MPFA on triangulations and for Richards' equation[J]. International Journal for Numerical Methods in Fluids, 2008, 58 (12): 1327- 1351
doi: 10.1002/fld.1787
[18]   SHENG Z, YUAN G An improved monotone finite volume scheme for diffusion equation on polygonal meshes[J]. Journal of Computational Physics, 2012, 231 (9): 3739- 3754
doi: 10.1016/j.jcp.2012.01.015
[19]   ZHOU Y. Parallel general-purpose reservoir simulation with coupled reservoir models and multisegment wells [D]. Stanford: Stanford University, 2012.
[20]   WONG Z Y, KWOK F, HORNE R N, et al Sequential-implicit Newton method for multiphysics simulation[J]. Journal of Computational Physics, 2019, 391: 155- 178
doi: 10.1016/j.jcp.2019.04.023
[21]   JIN Z L, LIU Y, DURLOFSKY L J Deep-learning-based surrogate model for reservoir simulation with time-varying well controls[J]. Journal of Petroleum Science and Engineering, 2020, 192: 107273
doi: 10.1016/j.petrol.2020.107273
[22]   DOTLIĆ M, POKORNI B, PUŠIĆ M, et al Non-linear multi-point flux approximation in the near-well region[J]. Filomat, 2018, 32 (20): 6857- 6867
doi: 10.2298/FIL1820857D
No related articles found!