|
|
Pavement distress situation prediction method based on graph neural network |
Zechao MA1( ),Xiaoming LIU1,*( ),Hanqing XIA2,Weiqiang WANG1,Jiuzeng WANG3,Haitao SHEN3 |
1. School of Electrical and Control Engineering, North China University of Technology, Beijing 100144, China 2. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China 3. Tangshan Expressway Group Company, Tangshan 063000, China |
|
|
Abstract A road pavement distress situation forecasting method employing graph convolutional networks was introduced, addressing the prediction problem of road pavement distress generation and deterioration. Firstly, a topological network was established through clustering algorithms, selecting the main influencing factors of the target pavement distress during its evolution. Subsequently, to enhance the expressive capability of the graph neural network for distress information, a graph topology enhancement method was employed, constructing views related to distress information from both static and dynamic aspects. Finally, an enhanced graph neural network (GNN) architecture was applied, by incorporating attention mechanisms in the view dimension to adjust the influence of different views and utilizing Transformer and GRU modules in the temporal dimension to enhance the predictive performance of the model for pavement distress states over extended time sequences. The internal calibration tests of the model, including ablation studies, multi-sample testing, and hyperparameter control group validation, demonstrated the applicability and stability of the proposed model. For the large and sparse pavement disease dataset, the mean absolute error of this model converged within 4.0, which was better than the results of the traditional prediction algorithms in terms of comprehensive performance.
|
Received: 23 October 2023
Published: 25 November 2024
|
|
Fund: 北方工业大学毓秀创新项目 (2024NCUTYXCX109). |
Corresponding Authors:
Xiaoming LIU
E-mail: z2mazc@126.com;tslxm@sina.com
|
基于图神经网络的路面病害态势预测方法
针对路面病害生成和恶化的预测问题,提出应用图卷积神经网络的路面病害态势预测方法. 通过聚类算法建立拓扑网络,选取目标病害在演化过程中的主要影响因素;为了增强图神经网络对病害信息的表达能力,采用图拓扑增强的方法,从静态和动态方面分别构造与病害信息相关的视图;采用图神经网络(GNN)架构增强的方法,在视图维度上应用注意力机制调整不同视图的影响力,并在时间维度上应用Transformer和GRU模块,增强模型在长时间序列中对病害状态的预测性能. 设计模型的内部调整测试,经消融试验、多样本测试和超参数对照组的验证,证明所提模型的适用性和稳定性. 针对大型稀疏的路面病害数据集,此模型的平均绝对误差均值收敛在4.0以内,综合性能优于传统预测算法.
关键词:
公路养护,
路面病害,
图神经网络,
时间序列预测,
裂缝
|
|
[1] |
PAN Y, SHANG Y, LIU G, et al Cost-effectiveness evaluation of pavement maintenance treatments using multiple regression and life-cycle cost analysis[J]. Construction and Building Materials, 2021, 292 (6): 123461
|
|
|
[2] |
HAFEZ M, KSAIBATI K, ATADERO R Developing a methodology to evaluate the effectiveness of pavement treatments applied to low-volume paved roads[J]. International Journal of Pavement Engineering, 2019, 20 (8): 894- 904
|
|
|
[3] |
FRANCE-MENSAH J, KOTHARI C, BRIEN W J, et al Integrating social equity in highway maintenance and rehabilitation programming: a quantitative approach[J]. Sustainable Cities and Society, 2019, 48 (11): 101526
|
|
|
[4] |
MARCELINO P, ANTUNES M L, FORTUNATO E, et al Machine learning approach for pavement performance prediction[J]. International Journal of Pavement Engineering, 2021, 22 (3): 341- 354
|
|
|
[5] |
何西西. 基于大数据分析的沥青路面使用性能指标评价研究[D]. 南京: 东南大学, 2020. HE Xixi. Research on the evaluation of asphalt pavement performance index based on big data analysis [D]. Nanjing: Southeast University, 2020.
|
|
|
[6] |
MARCELINO P, ANTUNES M L, FORTUNATO E, et al Transfer learning for pavement performance prediction[J]. International Journal of Pavement Research and Technology, 2020, 13 (3): 154- 167
|
|
|
[7] |
PITYONESI S M, EL-DIRABY T E Examining the relationship between two road performance indicators: pavement condition index and international roughness index[J]. Transportation Geotechnics, 2020, 26: 100441
|
|
|
[8] |
邬晓光, 时元绪, 李院军, 等 基于灰色理论的高速公路小修保养维修量预测模型[J]. 公路工程, 2020, 45: 123- 127 WU Xiaoguang, SHI Yuanxu, LI Yuanjun, et al Prediction model of minor repair and maintenance amount of expressway based on grey theory[J]. Highway Engineering, 2020, 45: 123- 127
|
|
|
[9] |
史小丽, 王峰, 张平, 等. 高速公路小修保养工程量预估方法[C]//中国公路学会养护与管理分会第八届学术年会论文集. 厦门: 中国公路学会, 2018. SHI Xiaoli, WANG Feng, ZHANG Ping, et al. Prediction method of highway minor repair and maintenance works [C]// Proceedings of 8th Annual Conference of Maintenance and Management Branch of China Highway Society . Xiamen: China Highway, 2018.
|
|
|
[10] |
ABDELAZIZ N, EL-HAKIM R T, EL-BADAWY S M, et al International roughness index prediction model for flexible pavements[J]. International Journal of Pavement Engineering, 2020, 21 (1): 88- 99
doi: 10.1080/10298436.2018.1441414
|
|
|
[11] |
滕伟玲, 姚玉玲 高速公路小修保养工程量的预测模型[J]. 长安大学学报: 自然科学版, 2012, 32 (6): 23- 27 TENG Weiling, YAO Yuling Expressway minor maintenance amount prediction based on neural network[J]. Journal of Chang’an University: Natural Science Edition, 2012, 32 (6): 23- 27
|
|
|
[12] |
NYIRANDAYISABYE R, LI H, DONG Q, et al Automatic pavement damage predictions using various machine learning algorithms: evaluation and comparison[J]. Results in Engineering, 2022, 16: 100657
|
|
|
[13] |
PANDIT W H, SHARMA K P, SHARMA N. International roughness index (IRI) prediction using various machine learning techniques on Flexible Pavements [C]// 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering . Greater Noida: IEEE, 2022: 1899–1905.
|
|
|
[14] |
INKOOM S, SOBANJO J, BARBU A, et al Prediction of the crack condition of highway pavements using machine learning models[J]. Structure and Infrastructure Engineering, 2019, 15 (7): 940- 953
|
|
|
[15] |
CHOPRA T, PARIDA M, KWATRA N, et al Development of pavement distress deterioration prediction models for urban road network using genetic programming[J]. Advances in Civil Engineering, 2018, (2): 1253108
|
|
|
[16] |
LI J, YIN G, WANG X, et al Automated decision making in highway pavement preventive maintenance based on deep learning[J]. Automation in Construction, 2022, 135 (6): 104111
|
|
|
[17] |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [C]// 2017 International Conference on Learning Representations . Toulon: OpenReview, 2017.
|
|
|
[18] |
LI Y, YU R, SHAHABI C, et al. Graph convolutional recurrent neural network: data-driven traffic forecasting [C]// 2018 International Conference on Learning Representations . Vancouver: OpenReview, 2018.
|
|
|
[19] |
LI M, ZHU Z. Spatial-temporal fusion graph neural networks for traffic flow forecasting [C]// Proceedings of the AAAI Conference on Artificial Intelligence . Washington: AAAI, 2021: 4189–4196.
|
|
|
[20] |
GUO K, HU Y, QIAN Z, et al Optimized graph convolution recurrent neural network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22 (2): 1138- 1149
|
|
|
[21] |
SHI X, QI H, SHEN Y, et al A spatial-temporal attention approach for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22 (8): 4909- 4918
|
|
|
[22] |
TRIRAT P, YOON S, LEE J MG-TAR: multi-view graph convolutional networks for traffic accident risk prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24 (4): 3779- 3794
|
|
|
[23] |
GUO J, SONG C, WANG H. A multi-step traffic speed forecasting model based on graph convolutional LSTM [C]// 2019 Chinese Automation Congress . Hangzhou: IEEE, 2019: 2466–2471.
|
|
|
[24] |
ZHAO L, SONG Y, ZHANG C, et al T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21 (9): 3848- 3858
|
|
|
[25] |
周毅, 胡姝婷, 李伟, 等 图神经网络驱动的交通预测技术: 探索与挑战[J]. 物联网学报, 2021, 5 (4): 1- 16 ZHOU Yi, HU Shuting, LI Wei, et al Graph neural network driven traffic prediction technology: review and challenge[J]. Chinese Journal on Internet of Things, 2021, 5 (4): 1- 16
doi: 10.11959/j.issn.2096-3750.2021.00235
|
|
|
[26] |
柴明堂, 马腾, 李国玉, 等 新藏公路路面病害空间分布及相互关系分析[J]. 冰川冻土, 2022, 44 (6): 1681- 1693 CHAI Mingtang, MA Teng, LI Guoyu, et al Analysis on spatial distribution and correlation of pavement distress along the Xinjiang-Tibet highway[J]. Journal of Glaciology and Geocryology, 2022, 44 (6): 1681- 1693
|
|
|
[27] |
PHILIP B, JASSMI H A A bayesian approach towards modelling the interrelationships of pavement deterioration factors[J]. Buildings, 2022, 12 (7): 1039
|
|
|
[28] |
易辉. 高速公路沥青路面使用性能评价及预测研究[D]. 西安: 长安大学, 2014. YI Hui. Study on the evaluation and prediction of expressway asphalt pavement performance [D]. Xian’an: Chan’an University, 2014.
|
|
|
[29] |
骆志元. 基于性能预测的路面养护智能决策研究[D]. 重庆: 西南大学, 2023. LUO Zhiyuan. Research on intelligent decision-making of pavement maintenance based on performance prediction [D]. Chongqing: Southwest University, 2023.
|
|
|
[30] |
GONG H, SUN Y, HU W, et al Investigating impacts of asphalt mixture properties on pavement performance using LTPP data through random forests[J]. Construction and Building Materials, 2019, 204: 203- 212
doi: 10.1016/j.conbuildmat.2019.01.198
|
|
|
[31] |
LI Z, LIU Z, HUANG J, et al MV-GCN: multi-view graph convolutional networks for link prediction[J]. IEEE Access, 2019, 7: 176317- 176328
|
|
|
[32] |
GENG X, LI Y, WANG L, et al. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting [C]// Proceedings of the AAAI Conference on Artificial Intelligence . Honolulu: AAAI, 2019, 449: 3656–3663.
|
|
|
[33] |
CHEN L, ZHANG H, XIAO J, et al. SCA-CNN: spatial and channel-wise attention in convolutional networks for image captioning [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition . Honolulu: IEEE, 2017: 6298–6306.
|
|
|
[34] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition . Honolulu: IEEE, 2017: 6000-6010.
|
|
|
[35] |
YAN H, LEI X, PU Z Learning dynamic and hierarchical traffic spatiotemporal features with transformer[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23 (11): 22386- 22399
|
|
|
[36] |
CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling [C]// NIPS 2014 Workshop on Deep Learning . Montreal: MIT, 2014.
|
|
|
[37] |
HUBER P J Robust estimation of a location parameter[J]. Breakthroughs in Statistics: Methodology and Distribution, 1992, (2): 492- 518
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|