1. College of Water Resources and Civil Engineering, Hunan Agricultural University, Changsha 410125, China 2. College of Civil Engineering, Hunan University, Changsha 410082, China 3. School of Civil Engineering and Architectural, Guangxi University, Nanning 530004, China 4. Department of Civil Engineering, University of Hong Kong, Hong Kong 999077, China
Experimental research was conducted on the flexural performance of T-shaped transverse joints suitable for the negative bending moment area of lightweight composite bridges. A theoretical analysis of the entire process of applying negative bending moments was conducted, and the design parameters for the joint were discussed. Results show that the primary crack in the specimens appears at the interface of the continuously cast UHPC joint and the panel surface below the loading point as the load increases. No significant cracks were observed in the middle of the specimens, and the visual initial crack strength of the UHPC joint interface can meet the design loads of real bridges. An analysis of the test beam was conducted, and formulas for calculating the maximum crack width of the joint, the design bending moment considering the effect of UHPC tensile stiffness, and deflection were proposed. Formulas for calculating the bearing capacity at each stage were obtained, and the predicted results accorded well with the experimental results. Parameter discussions and calculations show that the upper extended length of T-shaped joint in lightweight composite bridges with spans ranging from 20 m to 50 m can be set to 0.1 times of spans.
Shuwen DENG,Xudong SHAO,Banfu YAN,Minghong QIU. Experiment on flexure behavior of joint in negative moment area of lightweight composite bridge. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 399-412.
Fig.3Schematic of cast-in-place joint in negative bending moment area
Fig.4Comparison schemes of economic performance
桥梁方案
方案I
方案II
方案III
V/m3
m/kg
价格/ (元·m?2)
V/m3
m/kg
价格/ (元·m?2)
V/m3
m/kg
价格/ (元·m?2)
上部结构
C50或UHPC
0.44
—
1320
0.28
—
840
0.126
—
1130
预应力钢筋
—
18.3
275
—
—
—
—
—
—
钢梁
—
—
—
—
190
1900
—
150
1500
铺装层
0.11
—
200
—
—
—
—
—
—
运输吊装费
—
1200
180
—
920
140
—
500
75
下部结构
桥墩、盖梁和系梁
0.23
—
505
0.18
—
400
0.18
—
400
Tab.1Comparison of economic performance between different schemes
项目
应力/MPa
位置
UHPC面板
11.69
墩顶
UHPC面板
?20.75
边跨跨中
UHPC面板
5.28
接缝界面
工字钢
186.75
边跨跨中下缘
工字钢
?95.2
墩顶钢板下缘
Tab.2Design stress of bridge in service stage
Fig.5Schematic of bending test model for negative moment region of lightweight composite bridge
Fig.6Precast UHPC panel surface treatment
材料类型
养护方案
fc/MPa
fcf/MPa
E/GPa
预制段UHPC
蒸汽养护
162.38
28.74
49.03
现浇段UHPC
自然养护
135.01
32.19
45.82
Tab.3Mechanical property of UHPC materials
Fig.7Diagram of experimental measurement device
Fig.8Load-deflection curve of test beam mid-span
Fig.9Crack development of specimen joint interface
Fig.10Crack patterns of different substrates
Fig.11Strain development of UHPC
Fig.12Strain development of steel girders
Fig.13Strain development curve along with height of specimen
Fig.14Comparison between experimental and theoretical values of bending moment curvature
Fig.15Schematic of calculation sections
截面编号
Pcr/ kN
σcr/ MPa
截面1 (UHPC基体)
424.5
15.96
截面2 (接缝界面)
196.6
7.39
截面3 (跨中,墩顶)
1033.9
19.02
截面4 (接缝界面)
143.5
5.40
截面5 (UHPC基体)
336.5
12.66
Tab.4Nominal cracking stress of critical sections
Fig.16Detailed diagram of test piece loading process
Fig.17Comparison between theoretical and predicted values of UHPC surface crack width
Fig.18Internal force calculation diagram of typical section
Fig.19Internal force calculation diagram of typical section
Fig.20Comparison of calculated values and test results of mid-span displacement
Fig.21Bending moment envelope diagram in negative bending moment zone
L/m
h/m
hs/m
hl/m
单侧台阶长/m
20
0.88
0.75~0.62
0.028
1.625
30
1.28
1.15~1.02
0.028
2.92
40
1.93
1.80~1.67
0.038
2.96
50
2.63
2.50~2.37
0.038
3.51
Tab.5Main section dimensions of 20-50 m span SU-LWCBs preliminary design
Fig.22Preliminary design of 20–50 m span SU-LWCBs
[1]
张子飏, 邓开来, 徐腾飞 预制装配式混凝土桥梁结构2019年度研究进展[J]. 土木与环境工程学报: 中英文, 2020, 42 (5): 183- 191 ZHANG Ziyang, DENG Kailai, XU Tengfei State-of-the-art review of prefabricated concrete bridge structures in 2019[J]. Journal of Civil and Environmental Engineering, 2020, 42 (5): 183- 191
[2]
董志强, 吴刚 FRP 筋增强混凝土结构耐久性能研究进展[J]. 土木工程学报, 2019, 52 (10): 1- 19 DONG Zhiqiang, WU Gang Research progress on durability of FRP bars reinforced concrete structures[J]. China Civil Engineering Journal, 2019, 52 (10): 1- 19
[3]
王爱国, 郑毅, 张祖华, 等. 碱激发材料与普通硅酸盐水泥和混凝土的耐久性能比较[J], 工程(英文), 2020, 6(6): 695-706, 787-799. WANG Aiguo , ZHENG Yi, ZHANG Zuhua, et al. The durability of alkali-activated materials in comparison with ordinary portland cements and concretes: a review [J]. Engineering, 2020, 6(6): 695-706, 787-799.
[4]
赵明, 何湘峰, 邱明红, 等 全预制钢-UHPC轻型组合梁在中小跨径桥梁中的设计与应用研究[J]. 公路工程, 2019, 44 (5): 4 ZHAO Ming, HE Xiangfeng, QIU Minghong, et al Research on design and application of fully prefabricated steel-UHPC lightweight composite girder in medium and small span girder bridge[J]. Highway Engineering, 2019, 44 (5): 4
[5]
QI J, CHENG Z, WANG J, et al Full-scale testing on the flexural behavior of an innovative dovetail UHPC joint of composite bridges[J]. Structural Engineering and Mechanics, 2020, 75 (1): 49- 57
[6]
LU K, XU Q, LI W, et al Fatigue performance of UHPC bridge deck system with field-cast dovetail joint[J]. Engineering Structures, 2021, 237: 112108
doi: 10.1016/j.engstruct.2021.112108
[7]
PAN W, FAN J, NIE J, et al Experimental study on tensile behavior of wet joints in a prefabricated composite deck system composed of orthotropic steel deck and ultrathin reactive-powder concrete layer[J]. Journal of Bridge Engineering, 2016, 21 (10): 04016064
doi: 10.1061/(ASCE)BE.1943-5592.0000935
[8]
邵旭东, 陈斌, 周绪红 钢-RPC轻型组合桥面结构湿接头弯曲试验[J]. 中国公路学报, 2017, 30 (3): 210- 217 SHAO Xudong, CHEN Bin, ZHOU Xuhong Experiment on bending behavior of wet joints in light-weighted composite deck system composed of steel and RPC layer[J]. China Journal of Highway and Transport, 2017, 30 (3): 210- 217
[9]
HE S, MOSALLAM A S, FANG Z, et al Structural evaluation of steel–concrete joint with UHPC grout in single cable–plane hybrid cable-stayed bridges[J]. Journal of Bridge Engineering, 2019, 24 (4): 04019022
doi: 10.1061/(ASCE)BE.1943-5592.0001379
[10]
JIA J, REN Z, BAI Y, et al Tensile behavior of UHPC wet joints for precast bridge deck panels[J]. Engineering Structures, 2023, 282: 115826
doi: 10.1016/j.engstruct.2023.115826
[11]
XIAO J, GUO L, NIE J, et al. Flexural behavior of wet joints in steel-UHPC composite deck slabs under hogging moment [J]. Engineering Structures, 2022, 252: 113636.
[12]
QI J, BAO Y, WANG J, et al Flexural behavior of an innovative dovetail UHPC joint in composite bridges under negative bending moment[J]. Engineering Structures, 2019, 200: 109716
doi: 10.1016/j.engstruct.2019.109716
[13]
DU L, QI J, CHENG Z, et al Finite element modeling of UHPC slabs with dovetail joints and steel wire mesh using an innovative interfacial treating method[J]. Structures, 2022, 37: 745- 755
doi: 10.1016/j.istruc.2022.01.057
[14]
ZHAO C, WANG K, XU R, et al Development of fully prefabricated steel-UHPC composite deck system[J]. Journal of Structural Engineering, 2019, 145 (7): 04019051
doi: 10.1061/(ASCE)ST.1943-541X.0002338
[15]
CHITTY F, FREEMAN C, GARBER D Joint design optimization for accelerated construction of slab beam bridges[J]. Journal of Bridge Engineering, 2020, 25 (7): 04020029
doi: 10.1061/(ASCE)BE.1943-5592.0001561
[16]
ABOKIFA M, MOUSTAFA M Experimental behavior of precast bridge deck systems with non-proprietary UHPC transverse field joints[J]. Materials, 2021, 14 (22): 6964
doi: 10.3390/ma14226964
[17]
DENG E, ZHANG Z, ZHANG C, et al Experimental study on flexural behavior of UHPC wet joint in prefabricated multi-girder bridge[J]. Engineering Structures, 2023, 275: 115314
doi: 10.1016/j.engstruct.2022.115314
[18]
GRAYBEAL B. Design and construction of field-cast UHPC connections [R]. Washington, DC: Federal Highway Administration, 2014.
[19]
HE Z, MA Z, CHAPMAN C, et al Longitudinal joints with accelerated construction features in decked bulb-tee girder bridges: strut-and-tie model and design guidelines[J]. Journal of Bridge Engineering, 2012, 18 (5): 372- 379
[20]
JIANG H, HU Z, FENG J, et al Flexural behavior of UHPC-filled longitudinal connections with non-contacting lap-spliced reinforcements for narrow joint width[J]. Structures, 2022, 39: 620- 636
doi: 10.1016/j.istruc.2022.03.017
[21]
QIU M, SHAO X, YAN B, et al. Flexural behavior of UHPC joints for precast UHPC deck slabs [J]. Engineering Structures, 2022, 251 (part A): 113422.
[22]
SHAH Y, HU Z, YIN B, et al Flexural performance analysis of UHPC wet joint of prefabricated bridge deck[J]. Arabian Journal for Science and Engineering, 2021, 46 (11): 11253- 11266
doi: 10.1007/s13369-021-05735-z
[23]
ZHU Y, ZHANG Y, HUSSEIN H, et al Flexural study on UHPC–steel composite beams with joints under negative bending moment[J]. Journal of Bridge Engineering, 2020, 25 (10): 04020084
doi: 10.1061/(ASCE)BE.1943-5592.0001619
[24]
TAN Y, LV L, ZHANG D, et al Fatigue performance of a simply-supported T-beam UHPC bridge deck variable section joint structure[J]. Engineering Structures, 2022, 269: 114758
doi: 10.1016/j.engstruct.2022.114758
[25]
邵旭东, 胡伟业, 邱明红, 等. 组合梁负弯矩区UHPC接缝抗弯性能试验 [J]. 中国公路学报, 2021, 34(8): 246-260. SHAO Xudong, HU Weiye, QIU Minghong, et al. Experiment on flexural behavior of UHPC joint in negative moment area of composite bridges [J]. China Journal of Highway and Transport, 2021, 34(8): 246-260.
[26]
AFGC-SETRA. National addition to Eurocode 2 — design of concrete structures: specific rules for ultra-high performance fibre-reinforced concrete (UHPFRC) [S]. Paris: French Standard Institute, 2016.
张哲, 邵旭东, 李文光, 等 超高性能混凝土轴拉性能试验[J]. 中国公路学报, 2015, 28 (8): 50- 58 ZHANG Zhe, SHAO Xudong, LI Wenguang, et al Axial tensile behavior test of ultra high performance concrete[J]. China Journal of Highway and Transport, 2015, 28 (8): 50- 58
[29]
PIERRE R, MARCEL C Composition of reactive powder concretes[J]. Cement and Concrete Research, 1995, 25 (7): 1501- 1511
doi: 10.1016/0008-8846(95)00144-2
[30]
GRAYBEAL B, BRÜHWILER E, KIM B, et al International perspective on UHPC in bridge engineering[J]. Journal of Bridge Engineering, 2020, 25 (11): 04020094
doi: 10.1061/(ASCE)BE.1943-5592.0001630
LUO J, SHAO X, FAN W, et al Flexural cracking behavior and crack width predictions of composite (steel + UHPC) lightweight deck system[J]. Engineering Structures, 2019, 194: 120- 137
doi: 10.1016/j.engstruct.2019.05.018
[33]
LUO J, SHAO X, CAO J, et al Transverse bending behavior of the steel-UHPC lightweight composite deck: Orthogonal test and analysis[J]. Journal of Constructional Steel Research, 2019, 162: 105708
doi: 10.1016/j.jcsr.2019.105708
陈斌. 正交异性钢-UHPC轻型组合桥面结构湿接头抗弯性能研究与试验[D]. 长沙: 湖南大学, 2019. CHEN Bin. Research and experiment on bending behavior of wet joints in lightweight composite deck system composed of orthotropic steel and UHPC layer [D]. Changsha: Hunan University, 2019.
[36]
张彦玲, 李运生, 樊健生 钢混凝土连续组合梁的刚度计算方法[J]. 中南大学学报: 自然科学版, 2013, 44 (8): 3520- 3526 ZHANG Yanling, LI Yunsheng, FAN Jiansheng Stiffness calculation method for steel-concrete continuous composite beams[J]. Journal of Central South University: Science and Technology, 2013, 44 (8): 3520- 3526
[37]
Design of concrete structures: CEB-FIP-Model-Code 1990 [S]. London: British Standard Institution, 1993.