Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (2): 399-412    DOI: 10.3785/j.issn.1008-973X.2024.02.018
    
Experiment on flexure behavior of joint in negative moment area of lightweight composite bridge
Shuwen DENG1,2(),Xudong SHAO2,*(),Banfu YAN3,Minghong QIU2,4
1. College of Water Resources and Civil Engineering, Hunan Agricultural University, Changsha 410125, China
2. College of Civil Engineering, Hunan University, Changsha 410082, China
3. School of Civil Engineering and Architectural, Guangxi University, Nanning 530004, China
4. Department of Civil Engineering, University of Hong Kong, Hong Kong 999077, China
Download: HTML     PDF(5099KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Experimental research was conducted on the flexural performance of T-shaped transverse joints suitable for the negative bending moment area of lightweight composite bridges. A theoretical analysis of the entire process of applying negative bending moments was conducted, and the design parameters for the joint were discussed. Results show that the primary crack in the specimens appears at the interface of the continuously cast UHPC joint and the panel surface below the loading point as the load increases. No significant cracks were observed in the middle of the specimens, and the visual initial crack strength of the UHPC joint interface can meet the design loads of real bridges. An analysis of the test beam was conducted, and formulas for calculating the maximum crack width of the joint, the design bending moment considering the effect of UHPC tensile stiffness, and deflection were proposed. Formulas for calculating the bearing capacity at each stage were obtained, and the predicted results accorded well with the experimental results. Parameter discussions and calculations show that the upper extended length of T-shaped joint in lightweight composite bridges with spans ranging from 20 m to 50 m can be set to 0.1 times of spans.



Key wordsultra high performance concrete (UHPC)      UHPC joint      bending resistance test      calculation formula of crack width      calculation formula of deflection      calculation formula of ultimate bearing capacity     
Received: 23 February 2023      Published: 23 January 2024
CLC:  U 443  
Fund:  国家自然科学基金资助项目 (52108211);湖南省自然科学基金资助项目 (2022JJ40186);湖南省教育厅资助项目 (21B0188)
Corresponding Authors: Xudong SHAO     E-mail: dengsw@hunau.edu.cn;shaoxd@hnu.edu.cn
Cite this article:

Shuwen DENG,Xudong SHAO,Banfu YAN,Minghong QIU. Experiment on flexure behavior of joint in negative moment area of lightweight composite bridge. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 399-412.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.02.018     OR     https://www.zjujournals.com/eng/Y2024/V58/I2/399


轻型组合桥梁负弯矩区接缝抗弯性能试验

对适用于轻型组合桥梁负弯矩区的T形横向接缝抗弯性能进行试验研究,对负弯矩加载接缝的全过程进行理论分析,对接缝设计参数进行讨论. 研究结果表明,随着荷载的增大,试件的主裂缝出现在连续浇筑的UHPC接缝界面和加载点下方的面板表面,试件中部未发现明显裂纹,UHPC接缝界面的可视初裂强度可以满足实桥设计荷载. 对试验梁进行分析,提出接缝最大裂缝宽度、考虑UHPC拉伸刚度效应的设计弯矩和挠度计算公式,获得每阶段承载力的计算式,预测结果与试验结果吻合良好. 通过参数讨论和计算可知,跨度L = 20~50 m的轻型组合桥梁T形接缝上部加长长度可以设置为0.1L.


关键词: 超高性能混凝土(UHPC),  UHPC接缝,  抗弯性能试验,  裂缝宽度计算式,  挠度计算式,  极限承载力计算式 
Fig.1 Mapu Bridge overview
Fig.2 Cross section of Mapu Bridge
Fig.3 Schematic of cast-in-place joint in negative bending moment area
Fig.4 Comparison schemes of economic performance
桥梁方案方案I方案II方案III
V/m3m/kg价格/
(元·m?2)
V/m3m/kg价格/
(元·m?2)
V/m3m/kg价格/
(元·m?2)
上部结构C50或UHPC0.4413200.288400.1261130
预应力钢筋18.3275
钢梁19019001501500
铺装层0.11200
运输吊装费120018092014050075
下部结构桥墩、盖梁和系梁0.23505 0.18400 0.18400
Tab.1 Comparison of economic performance between different schemes
项目应力/MPa位置
UHPC面板11.69墩顶
UHPC面板?20.75边跨跨中
UHPC面板5.28接缝界面
工字钢186.75边跨跨中下缘
工字钢?95.2墩顶钢板下缘
Tab.2 Design stress of bridge in service stage
Fig.5 Schematic of bending test model for negative moment region of lightweight composite bridge
Fig.6 Precast UHPC panel surface treatment
材料类型养护方案fc/MPafcf/MPaE/GPa
预制段UHPC蒸汽养护162.3828.7449.03
现浇段UHPC自然养护135.0132.1945.82
Tab.3 Mechanical property of UHPC materials
Fig.7 Diagram of experimental measurement device
Fig.8 Load-deflection curve of test beam mid-span
Fig.9 Crack development of specimen joint interface
Fig.10 Crack patterns of different substrates
Fig.11 Strain development of UHPC
Fig.12 Strain development of steel girders
Fig.13 Strain development curve along with height of specimen
Fig.14 Comparison between experimental and theoretical values of bending moment curvature
Fig.15 Schematic of calculation sections
截面编号Pcr/ kNσcr/ MPa
截面1 (UHPC基体)424.515.96
截面2 (接缝界面)196.67.39
截面3 (跨中,墩顶)1033.919.02
截面4 (接缝界面)143.55.40
截面5 (UHPC基体)336.512.66
Tab.4 Nominal cracking stress of critical sections
Fig.16 Detailed diagram of test piece loading process
Fig.17 Comparison between theoretical and predicted values of UHPC surface crack width
Fig.18 Internal force calculation diagram of typical section
Fig.19 Internal force calculation diagram of typical section
Fig.20 Comparison of calculated values and test results of mid-span displacement
Fig.21 Bending moment envelope diagram in negative bending moment zone
L/mh/mhs/mhl/m单侧台阶长/m
200.880.75~0.620.0281.625
301.281.15~1.020.0282.92
401.931.80~1.670.0382.96
502.632.50~2.370.0383.51
Tab.5 Main section dimensions of 20-50 m span SU-LWCBs preliminary design
Fig.22 Preliminary design of 20–50 m span SU-LWCBs
[1]   张子飏, 邓开来, 徐腾飞 预制装配式混凝土桥梁结构2019年度研究进展[J]. 土木与环境工程学报: 中英文, 2020, 42 (5): 183- 191
ZHANG Ziyang, DENG Kailai, XU Tengfei State-of-the-art review of prefabricated concrete bridge structures in 2019[J]. Journal of Civil and Environmental Engineering, 2020, 42 (5): 183- 191
[2]   董志强, 吴刚 FRP 筋增强混凝土结构耐久性能研究进展[J]. 土木工程学报, 2019, 52 (10): 1- 19
DONG Zhiqiang, WU Gang Research progress on durability of FRP bars reinforced concrete structures[J]. China Civil Engineering Journal, 2019, 52 (10): 1- 19
[3]   王爱国, 郑毅, 张祖华, 等. 碱激发材料与普通硅酸盐水泥和混凝土的耐久性能比较[J], 工程(英文), 2020, 6(6): 695-706, 787-799.
WANG Aiguo , ZHENG Yi, ZHANG Zuhua, et al. The durability of alkali-activated materials in comparison with ordinary portland cements and concretes: a review [J]. Engineering, 2020, 6(6): 695-706, 787-799.
[4]   赵明, 何湘峰, 邱明红, 等 全预制钢-UHPC轻型组合梁在中小跨径桥梁中的设计与应用研究[J]. 公路工程, 2019, 44 (5): 4
ZHAO Ming, HE Xiangfeng, QIU Minghong, et al Research on design and application of fully prefabricated steel-UHPC lightweight composite girder in medium and small span girder bridge[J]. Highway Engineering, 2019, 44 (5): 4
[5]   QI J, CHENG Z, WANG J, et al Full-scale testing on the flexural behavior of an innovative dovetail UHPC joint of composite bridges[J]. Structural Engineering and Mechanics, 2020, 75 (1): 49- 57
[6]   LU K, XU Q, LI W, et al Fatigue performance of UHPC bridge deck system with field-cast dovetail joint[J]. Engineering Structures, 2021, 237: 112108
doi: 10.1016/j.engstruct.2021.112108
[7]   PAN W, FAN J, NIE J, et al Experimental study on tensile behavior of wet joints in a prefabricated composite deck system composed of orthotropic steel deck and ultrathin reactive-powder concrete layer[J]. Journal of Bridge Engineering, 2016, 21 (10): 04016064
doi: 10.1061/(ASCE)BE.1943-5592.0000935
[8]   邵旭东, 陈斌, 周绪红 钢-RPC轻型组合桥面结构湿接头弯曲试验[J]. 中国公路学报, 2017, 30 (3): 210- 217
SHAO Xudong, CHEN Bin, ZHOU Xuhong Experiment on bending behavior of wet joints in light-weighted composite deck system composed of steel and RPC layer[J]. China Journal of Highway and Transport, 2017, 30 (3): 210- 217
[9]   HE S, MOSALLAM A S, FANG Z, et al Structural evaluation of steel–concrete joint with UHPC grout in single cable–plane hybrid cable-stayed bridges[J]. Journal of Bridge Engineering, 2019, 24 (4): 04019022
doi: 10.1061/(ASCE)BE.1943-5592.0001379
[10]   JIA J, REN Z, BAI Y, et al Tensile behavior of UHPC wet joints for precast bridge deck panels[J]. Engineering Structures, 2023, 282: 115826
doi: 10.1016/j.engstruct.2023.115826
[11]   XIAO J, GUO L, NIE J, et al. Flexural behavior of wet joints in steel-UHPC composite deck slabs under hogging moment [J]. Engineering Structures, 2022, 252: 113636.
[12]   QI J, BAO Y, WANG J, et al Flexural behavior of an innovative dovetail UHPC joint in composite bridges under negative bending moment[J]. Engineering Structures, 2019, 200: 109716
doi: 10.1016/j.engstruct.2019.109716
[13]   DU L, QI J, CHENG Z, et al Finite element modeling of UHPC slabs with dovetail joints and steel wire mesh using an innovative interfacial treating method[J]. Structures, 2022, 37: 745- 755
doi: 10.1016/j.istruc.2022.01.057
[14]   ZHAO C, WANG K, XU R, et al Development of fully prefabricated steel-UHPC composite deck system[J]. Journal of Structural Engineering, 2019, 145 (7): 04019051
doi: 10.1061/(ASCE)ST.1943-541X.0002338
[15]   CHITTY F, FREEMAN C, GARBER D Joint design optimization for accelerated construction of slab beam bridges[J]. Journal of Bridge Engineering, 2020, 25 (7): 04020029
doi: 10.1061/(ASCE)BE.1943-5592.0001561
[16]   ABOKIFA M, MOUSTAFA M Experimental behavior of precast bridge deck systems with non-proprietary UHPC transverse field joints[J]. Materials, 2021, 14 (22): 6964
doi: 10.3390/ma14226964
[17]   DENG E, ZHANG Z, ZHANG C, et al Experimental study on flexural behavior of UHPC wet joint in prefabricated multi-girder bridge[J]. Engineering Structures, 2023, 275: 115314
doi: 10.1016/j.engstruct.2022.115314
[18]   GRAYBEAL B. Design and construction of field-cast UHPC connections [R]. Washington, DC: Federal Highway Administration, 2014.
[19]   HE Z, MA Z, CHAPMAN C, et al Longitudinal joints with accelerated construction features in decked bulb-tee girder bridges: strut-and-tie model and design guidelines[J]. Journal of Bridge Engineering, 2012, 18 (5): 372- 379
[20]   JIANG H, HU Z, FENG J, et al Flexural behavior of UHPC-filled longitudinal connections with non-contacting lap-spliced reinforcements for narrow joint width[J]. Structures, 2022, 39: 620- 636
doi: 10.1016/j.istruc.2022.03.017
[21]   QIU M, SHAO X, YAN B, et al. Flexural behavior of UHPC joints for precast UHPC deck slabs [J]. Engineering Structures, 2022, 251 (part A): 113422.
[22]   SHAH Y, HU Z, YIN B, et al Flexural performance analysis of UHPC wet joint of prefabricated bridge deck[J]. Arabian Journal for Science and Engineering, 2021, 46 (11): 11253- 11266
doi: 10.1007/s13369-021-05735-z
[23]   ZHU Y, ZHANG Y, HUSSEIN H, et al Flexural study on UHPC–steel composite beams with joints under negative bending moment[J]. Journal of Bridge Engineering, 2020, 25 (10): 04020084
doi: 10.1061/(ASCE)BE.1943-5592.0001619
[24]   TAN Y, LV L, ZHANG D, et al Fatigue performance of a simply-supported T-beam UHPC bridge deck variable section joint structure[J]. Engineering Structures, 2022, 269: 114758
doi: 10.1016/j.engstruct.2022.114758
[25]   邵旭东, 胡伟业, 邱明红, 等. 组合梁负弯矩区UHPC接缝抗弯性能试验 [J]. 中国公路学报, 2021, 34(8): 246-260.
SHAO Xudong, HU Weiye, QIU Minghong, et al. Experiment on flexural behavior of UHPC joint in negative moment area of composite bridges [J]. China Journal of Highway and Transport, 2021, 34(8): 246-260.
[26]   AFGC-SETRA. National addition to Eurocode 2 — design of concrete structures: specific rules for ultra-high performance fibre-reinforced concrete (UHPFRC) [S]. Paris: French Standard Institute, 2016.
[27]   中交公路规划设计院有限公司. 公路钢结构桥梁设计规范 [M]. 北京: 人民交通出版社股份有限公司, 2015.
[28]   张哲, 邵旭东, 李文光, 等 超高性能混凝土轴拉性能试验[J]. 中国公路学报, 2015, 28 (8): 50- 58
ZHANG Zhe, SHAO Xudong, LI Wenguang, et al Axial tensile behavior test of ultra high performance concrete[J]. China Journal of Highway and Transport, 2015, 28 (8): 50- 58
[29]   PIERRE R, MARCEL C Composition of reactive powder concretes[J]. Cement and Concrete Research, 1995, 25 (7): 1501- 1511
doi: 10.1016/0008-8846(95)00144-2
[30]   GRAYBEAL B, BRÜHWILER E, KIM B, et al International perspective on UHPC in bridge engineering[J]. Journal of Bridge Engineering, 2020, 25 (11): 04020094
doi: 10.1061/(ASCE)BE.1943-5592.0001630
[31]   中华人民共和国国家质量监督检验检疫总局. 活性粉末混凝土[S]. 北京: 中国标准出版社, 2015.
[32]   LUO J, SHAO X, FAN W, et al Flexural cracking behavior and crack width predictions of composite (steel + UHPC) lightweight deck system[J]. Engineering Structures, 2019, 194: 120- 137
doi: 10.1016/j.engstruct.2019.05.018
[33]   LUO J, SHAO X, CAO J, et al Transverse bending behavior of the steel-UHPC lightweight composite deck: Orthogonal test and analysis[J]. Journal of Constructional Steel Research, 2019, 162: 105708
doi: 10.1016/j.jcsr.2019.105708
[34]   中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.
[35]   陈斌. 正交异性钢-UHPC轻型组合桥面结构湿接头抗弯性能研究与试验[D]. 长沙: 湖南大学, 2019.
CHEN Bin. Research and experiment on bending behavior of wet joints in lightweight composite deck system composed of orthotropic steel and UHPC layer [D]. Changsha: Hunan University, 2019.
[36]   张彦玲, 李运生, 樊健生 钢混凝土连续组合梁的刚度计算方法[J]. 中南大学学报: 自然科学版, 2013, 44 (8): 3520- 3526
ZHANG Yanling, LI Yunsheng, FAN Jiansheng Stiffness calculation method for steel-concrete continuous composite beams[J]. Journal of Central South University: Science and Technology, 2013, 44 (8): 3520- 3526
[37]   Design of concrete structures: CEB-FIP-Model-Code 1990 [S]. London: British Standard Institution, 1993.
[1] Li-hua LI,Zi-jian LI,Heng-lin XIAO,Shao-ping HUANG,Yi-ming LIU. Engineering characteristics and mechanism of rice husk ash-ground granulated blast slag cured expansive soil[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1736-1745.
[2] Shao-kai NIE,Peng-fei LIU,Te BA,Yun-min CHEN. Seepage experiment and numerical simulation based on microfluidic chip model[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 967-976.
[3] Zhen-yang SHE,Ya-le LI,Xue-hong LI,Xiu-li XU,Jing-kai LIU. Investigation on seismic performance of thin-walled high piers with rocking self-centering double-limb with energy-consuming tie beam[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 977-987.
[4] Zhi-gang CAO,Si-qi WANG,Yi-fei XU,Xiao-dong BAI,Zong-hao YUAN,Xia-fei MA. Vibration mitigation mechanism and effect of ballast mats for over-track buildings on metro depot[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 71-80.
[5] Jia-qi NI,Liang-tong ZHAN,Song FENG,Ling-gang KONG,Tian FENG. Experimental study on compacted steel slag-bentonite mixtures as hydraulic barrier material of cover[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2478-2486.
[6] Wei-hang CHEN,Qiang LUO,Teng-fei WANG,Wen-sheng ZHANG,Liang-wei JIANG. Reliability analysis of post-construction settlement of DMC composite foundation and design optimization[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2019-2027.
[7] Xia-lin LIU,Sheng-bin ZHANG,Quan CHEN,Heng SHU,Shang-ge LIU. Code development and verification for weak coupling of seepage-stress based on TOUGH2 and FLAC3D[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1485-1494.
[8] Xin-shan ZHUANG,Mu-kai ZHOU,Rong ZHOU,Gao-liang TAO. Pore characteristics and hysteresis curve morphology of expansive soil improved by EPS[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1353-1362, 1403.
[9] Dan ZENG,Yang LIU,Lei CAO. Shear performance of innovative shear connectors in steel-UHPC composite structure[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1714-1724.
[10] Zhong-nan LI,Hai-bo ZHU,Yang ZHAO,Xue LUO,Rong-qiao XU. Thermal stress analysis and crack control of assembled bridge pier[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 46-54.
[11] Li-guo WANG,Xu-dong SHAO,Jun-hui CAO,Yu-bao CHEN,Guang HE,Yang WANG. Performance of steel-ultrathin UHPC composite bridge deck based on ultra-short headed studs[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2027-2037.
[12] Dong-xing WANG,Lin-feng WU,Yi-kai TANG,Xue-yong XU. Mud-water separation process and performance evaluation of waste slurry from construction engineering[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1049-1057.
[13] Jun LUO,Xu-dong SHAO,Jun-hui CAO,Wei FAN,Bi-da PEI. Orthogonal test and calculation method of cracking load of steel-ultra-high performance concrete composite specimen[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 909-920.
[14] Wen-tao HU,Dou LIU,Da-xin GENG,Ning WANG,Chang-jie XU,Xing SHANGGUAN,Jie MIN. Internal force and deformation of step-tapered pile under lateral loads[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 739-747.
[15] Yue-han XIE,Chao-sheng TANG,Bo LIU,Qing CHENG,Li-yang YIN,Ning-jun JIANG,Bin SHI. Water stability improvement of clayey soil based on microbial induced calcite precipitation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1438-1447.