Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (6): 1049-1057    DOI: 10.3785/j.issn.1008-973X.2020.06.001
Civil Engineering     
Mud-water separation process and performance evaluation of waste slurry from construction engineering
Dong-xing WANG1(),Lin-feng WU1,Yi-kai TANG1,Xue-yong XU2
1. Hubei Key Laboratory of Safety for Geotechnical and Structural Engineering, School of Civil Engineering, Wuhan University, Wuhan 430072, China
2. Dacheng Kechuang Foundation Construction Co. Ltd, Wuhan 430021, China
Download: HTML     PDF(1880KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Three chemical flocculation methods including organic, inorganic and organic-inorganic composite were selected to treat slurry from construction engineering, in order to identify the mud-water separation process and to improve the mud-water separation efficiency. The effects of flocculant type (organic, inorganic and composite) and flocculant dosage on the mud-water separation process and its associated micro-mechanisms were compared through the indoor sedimentation column, particle grading and scanning electron microscopy tests. The experimental results show that the organic and composite flocculants can effectively promote the mud-water separation process, and the conditioning effect of organic flocculants is presented as follows according to the value of supernant volume: APAM>PAM>ACPAM>CPAM>HCA. The optimum performance of mud-water separation is identified at reasonable amount of APAM, and the water content of dewatered slurry is less than 76.8%. The effect of inorganic flocculants on mud-water separation is relatively poor, when compared to organic and composite flocculants. The combined formulation of FeCl3 and APAM can improve the conditioning performance of slurry, and play effectively the role of electro-neutralization and net capture-sweep. The flocculant caused an obvious agglomeration of fine particles in slurry through adsorption bridging, leading to a reduction in fraction of fine particles and an increase in amount of agglomerated coarse particles. The scanning electron microscopy images reveal that the original slurry particles tend to be deposited in a parallel manner, and the flocculant induces an agglomeration of fine particles and a denser flocculated microstructure. This study reveals the intrinsic microscopic mechanism of flocculation-induced mud-water separation process, and provides a theoretical basis for rapid mud-water separation technology of waste slurry from construction engineering.



Key wordsconstruction slurry      flocculants      sedimentation column      mud-water separation      micromechanisms     
Received: 06 May 2019      Published: 06 July 2020
CLC:  TU 443  
Cite this article:

Dong-xing WANG,Lin-feng WU,Yi-kai TANG,Xue-yong XU. Mud-water separation process and performance evaluation of waste slurry from construction engineering. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1049-1057.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.06.001     OR     http://www.zjujournals.com/eng/Y2020/V54/I6/1049


建筑废弃泥浆泥水分离过程与效果评价

为明确建筑废弃泥浆泥水分离性能,提高泥浆泥水分离效率,选取有机、无机和复合3种化学絮凝方法,通过室内沉降柱、颗粒级配和扫描电镜试验,对比研究絮凝剂类型和投加量对泥浆泥水分离效果的影响及微观作用机理. 结果表明:有机和复合絮凝剂可有效促进快速泥水分离,有机絮凝剂按调理效果排序(根据上清液体积高低)依次为阴离子聚丙烯酰胺、聚丙烯酰胺、两性离子聚丙烯酰胺、阳离子聚丙烯酰胺和聚二甲基二烯丙基氯化铵,适宜投加密度阴离子聚丙烯酰胺的泥水分离效果最佳,分离泥浆中水的质量分数小于76.8%;无机絮凝剂的泥水分离效果则相对较差;氯化铁和阴离子聚丙烯酰胺联合投加可以提高泥浆调理效果,有效发挥絮凝剂的电中和及网捕-卷扫作用;絮凝剂通过吸附架桥作用使泥浆颗粒发生明显聚集现象,即细颗粒减少、团聚粗颗粒增加. 扫描电镜图显示:原始泥浆颗粒倾向于平行方式沉积,投加絮凝剂使得泥浆颗粒团聚、絮体结构更加致密,揭示了絮凝作用诱发建筑泥浆泥水分离过程的微观机理,为泥浆快速泥水分离技术提供数据支撑和理论依据.


关键词: 建筑泥浆,  絮凝剂,  沉降柱,  泥水分离,  微观机理 
Fig.1 Cumulative grain size distribution curve of natural slurry
Fig.2 Settlement column tests of organic flocculant-treated slurry
Fig.3 Comparison of mud-water separation process of inorganic flocculant-treated slurry
Fig.4 Effect of flocculation time and dosage on supernatant volume of inorganic flocculant-treated slurry
Fig.5 Comparison of mud-water separation process of organic flocculant-treated slurry
Fig.6 Comparison of conditioning performance between slurry samples with different flocculants
Fig.7 Settlement process of compound flocculant-treated slurry
Fig.8 Chang in particle size of slurry caused by flocculation
Fig.9 SEM images of flocculant-treated slurry magnified by 2×104 times
[1]   朱伟, 闵凡路, 吕一彦, 等 “泥科学与应用技术”的提出及研究进展[J]. 岩土力学, 2013, 34 (11): 3041- 3054
ZHU Wei, MIN Fan-lu, LV Yi-yan, et al Subject of “Mud science and application technology” and its research progress[J]. Rock and Soil Mechanics, 2013, 34 (11): 3041- 3054
[2]   高宇, 周普玉, 杨霞 絮凝剂对工程废弃泥浆脱水性能的影响[J]. 环境工程学报, 2017, 11 (10): 5597- 5602
GAO Yu, ZHOU Pu-yu, YANG Xia Effect of flocculants on dehydration properties of construction waste slurry[J]. Chinese Journal of Environmental Engineering, 2017, 11 (10): 5597- 5602
doi: 10.12030/j.cjee.201611101
[3]   房凯, 张忠苗, 刘兴旺, 等 工程废弃泥浆污染及其防治措施研究[J]. 岩土工程学报, 2011, 33 (S2): 238- 241
FANG Kai, ZHANG Zhong-miao, LIU Xing-wang, et al Pollution of construction waste slurry and prevention measures[J]. Chinese Journal of Geotechnical Engineering, 2011, 33 (S2): 238- 241
[4]   张忠苗, 房凯, 王智杰, 等 泥浆零排放处理技术及分离土的工程特性研究[J]. 岩土工程学报, 2011, 33 (9): 1456- 1461
ZHANG Zhong-miao, FANG Kai, WANG Zhi-jie, et al Zero discharge treatment technology for slurry and engineering properties of separated soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33 (9): 1456- 1461
[5]   周源, 高玉峰, 陶辉 透气真空快速泥水分离技术对淤泥水分的促排作用[J]. 岩石力学与工程学报, 2010, 29 (S1): 3064- 3070
ZHOU Yuan, GAO Yu-feng, TAO Hui Drainage-promotion effect of aeration vacuum rapid mud-water separating technique on dredged sludge[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29 (S1): 3064- 3070
[6]   杨春英, 徐薇, 白晨光 施工废弃泥浆絮凝脱水试验及机理分析[J]. 环境科技, 2013, 26 (5): 15- 17, 21
YANG Chun-ying, XU Wei, BAI Chen-guang The mud flocculation dehydration test and mechanism analysis[J]. Environmental Science and Technology, 2013, 26 (5): 15- 17, 21
doi: 10.3969/j.issn.1674-4829.2013.05.004
[7]   李冲, 吕志刚, 陈洪龄, 等 阴离子型聚丙烯酰胺在废弃桩基泥浆处理中的应用[J]. 环境科技, 2012, 25 (01): 33- 37
LI Chong, LV Zhi- gang, CHEN Hong-ling, et al Application of anionic polyacrylamide in treating waste slurry from pile foundation engineering[J]. Environmental Science and Technology, 2012, 25 (01): 33- 37
doi: 10.3969/j.issn.1674-4829.2012.01.009
[8]   冷凡, 庄迎春, 刘世明, 等 泥浆快速化学脱稳与固液分离试验研究[J]. 哈尔滨工程大学学报, 2014, 35 (3): 280- 284
LENG Fan, ZHUANG Ying-chun, LIU Shi-ming, et al Experimental research on rapid chemical destabilization and solid-liquid separation of slurry[J]. Journal of Harbin Engineering University, 2014, 35 (3): 280- 284
[9]   刘娟, 武耀锋, 张晓慷 水分散型阳离子聚丙烯酰胺絮凝剂的絮凝性能及其机理[J]. 环境工程学报, 2015, 9 (1): 119- 124
LIU Juan, WU Yao-feng, ZHANG Xiao-kang Flocculation capability of aqueous dispersion polyacrylamide flocculant and its mechanism[J]. Chinese Journal of Environmental Engineering, 2015, 9 (1): 119- 124
doi: 10.12030/j.cjee.20150120
[10]   武亚军, 陆逸天, 牛坤, 等 药剂真空预压法处理工程废浆试验[J]. 岩土工程学报, 2016, 38 (8): 1365- 1373
WU Ya-jun, LU Yi-tian, NIU Kun, et al Experiment study on solid-liquid separation of construction waste slurry by additive-agent combined vacuum preloading[J]. Chinese Journal of Geotechnical Engineering, 2016, 38 (8): 1365- 1373
doi: 10.11779/CJGE201608002
[11]   武亚军, 周振, 陆逸天, 等 pH值对工程废浆稳定、絮凝及固结特性的影响[J]. 土木工程学报, 2018, 51 (9): 92- 101
WU Ya-jun, ZHOU Zhen, LU Yi-tian, et al Effects of pH value on stability, flocculation and consolidation characteristics of waste slurry[J]. China Civil Engineering Journal, 2018, 51 (9): 92- 101
[12]   丁伟文, 孙林柱, 丁光亚, 等 阳离子PAM絮凝剂对钻孔泥浆絮凝效果的试验研究[J]. 三峡大学学报, 2013, 35 (3): 65- 68
DING Wei-wen, SUN Lin-zhu, DING Guang-ya, et al Cationic PAM flocculating agent of drilling mud flocculation effect of experimental study[J]. Journal of Three Gorges University, 2013, 35 (3): 65- 68
[13]   于真真. 钻井废弃泥浆无害化处理实验研究[D]. 天津: 天津大学, 2009.
YU Zhen-zhen. Study on harmless treatment of waste drilling mud [D]. Tianjin: Tianjin University, 2009.
[14]   HE J, CHU J Sedimentation behavior of flocculant-treated soil slurry[J]. Marine Georesources and Geotechnology, 2017, 35 (5): 593- 602
doi: 10.1080/1064119X.2016.1177625
[15]   岳舜琳, 陆在宏, 周云, 等 水厂排泥水浓缩性能研究[J]. 净水技术, 2003, 22 (5): 1- 5
YUE Shun-lin, LU Zai-hong, ZHOU Yun, et al Study on the thickening properties of water plants sewage[J]. Water Purification Technology, 2003, 22 (5): 1- 5
doi: 10.3969/j.issn.1009-0177.2003.05.001
[16]   汪洵. N市建筑泥浆泥水分离调理工艺研究[D]. 哈尔滨工业大学, 2013.
WANG Xun. Condition technology for sludge dewatering of construction slurry in N city[D]. Harbin Institute of Technology, 2013.
[17]   韩瑞, 吕宪俊, 李琳, 等 非离子絮凝剂对微细粒尾矿絮凝沉降的影响[J]. 中国矿业, 2016, 25 (5): 97- 101
HAN Rui, LV Xian-jun, LI Lin, et al The impact of non-ionic flocculant on the settling performance of micro-fine tailings[J]. China Mining Magazine, 2016, 25 (5): 97- 101
doi: 10.3969/j.issn.1004-4051.2016.05.024
[18]   汤继军, 孔维林, 黄红衫 聚二甲基二烯丙基氯化铵(HCA)对活性污泥脱水性能研究[J]. 工业用水与废水, 2001, 32 (6): 27- 29
TANG Ji-jun, KONG Wei-lin, HUANG Hong-shan Study on the dewatering ability of HCA in activated sludge[J]. Industrial Water and Wastewater, 2001, 32 (6): 27- 29
doi: 10.3969/j.issn.1009-2455.2001.06.010
[19]   梁止水, 杨才千, 高海鹰, 等 建筑工程废弃泥浆快速泥水分离试验研究[J]. 东南大学学报: 自然科学版, 2016, 46 (2): 427- 433
LIANG Zhi-shui, YANG Cai-qian, GAO Hai-ying, et al Experimental study on rapid separation between water and slurry from construction engineering[J]. Journal of Southeast University: Natural Science Edition, 2016, 46 (2): 427- 433
[1] Wen-tao HU,Dou LIU,Da-xin GENG,Ning WANG,Chang-jie XU,Xing SHANGGUAN,Jie MIN. Internal force and deformation of step-tapered pile under lateral loads[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 739-747.
[2] Yue-han XIE,Chao-sheng TANG,Bo LIU,Qing CHENG,Li-yang YIN,Ning-jun JIANG,Bin SHI. Water stability improvement of clayey soil based on microbial induced calcite precipitation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1438-1447.
[3] YANG Guo lin, DUAN Jun yi, YANG Xiao, XU Ya bin. Vibration characteristics of subgrade in expansive soil area under simulated rainfall and natural conditions[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(12): 2319-2327.
[4] ZHANG Jun feng, DAI Xiao song, ZOU Wei lie, XU Shun ping, LI Zi you. Experiments on pavement performance of solidified sediment modified with cement[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2165-2171.
[5] LIN Cheng xiang, LING Dao sheng, ZHONG Shi ying. Application of particle flow code numerical simulation in research of geotechnical behavior of lunar soil[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1679-1691.
[6] HU Ping-chuan, ZHOU Jian, WEN Xiao-gui, CHEN Yu-xiang, LI Yi-wen. Laboratory model experiment of electro-osmosis combined with loading and pneumatic fracturing[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1434-1440.
[7] TAO Yan-li, ZHOU Jian, GONG Xiao-nan. Experimental study on function mechanism of electrode materials upon electro-osmotic process[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(9): 1618-1623.
[8] HUANG Bo, LI Ling, LING Dao-sheng, CHEN Xing-yao. Modes of additional attenuation of Gmax and its influence on seismic site response[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(7): 1170-1179.
[9] CHEN Ren-peng, LIU Yuan, LIU Sheng-xiang, TANG Lv-jun. Characteristics of upward moving for lining during shield tunnelling construction[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(6): 1068-1074.
[10] GUO Lin, CAI Yuan-qiang, GU Chuan, WANG Jun. Resilient and permanent strain behavior of soft clay under cyclic loading[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(12): 2111-2117.
[11] LIANG Meng-gen, LIANG Tian, CHEN Yun-min. Centrifuge shaking table modeling of liquefaction characteristics of free field[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(10): 1805-1814.
[12] HAN Tong-chun, DOU Hong-qiang, MA Shi-guo, WANG Fu-jian. Rainwater redistribution on stability of homogenous infinite slope[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(10): 1824-1829.
[13] CHEN Zhuo , ZHOU Jian, WEN Xiao-gui,TAO Yan-li. Experimental research on effect of polarity reversal to electro-osmotic[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(9): 1579-1584.
[14] WU Yong, PEI Xiang-jun, HE Si-ming, LI Xin-po. Hydraulic mechanism of gully bed erosion by debris flow in rainfall[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(9): 1585-1592.
[15] CAI Yuan-qiang,LIU Xin-feng,GUO Lin,SUN Hong-lei,CAO Zhi-gang. Long-term settlement of surcharge preloading foundation in soft clay area induced by aircraft loads[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(7): 1157-1163.