Please wait a minute...
J4  2013, Vol. 47 Issue (12): 2111-2117    DOI: 10.3785/j.issn.1008-973X.2013.12.006
    
Resilient and permanent strain behavior of soft clay under cyclic loading
GUO Lin1,2, CAI Yuan-qiang1,2, GU Chuan2, WANG Jun2
1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China; 2. College of Architecture and Civil Engineering, Wenzhou University, Wenzhou 325035,China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Considering the characteristics of traffic loading, undrained high-cycle loading (50 000 cycles) triaxial tests under different initial confining pressures and cyclic stress ratios were conducted on natural Wenzhou soft clay through dynamic triaxial test system (DYNTTS) manufactured by global digital system (GDS) corporation in England to research the influences of cyclic stress ratio on stress-strain curves, resilient modulus and permanent strain. Results show that cyclic stress ratio significantly influences the shape of stress-strain curve and its development. Accordingly, with the increase of cyclic stress ratio, both the decreasing degree of resilient modulus and the cycle number reached steady value increase. By analyzing the resilient modulus and permanent strain after 50 000 cycles, the new cyclic stress ratio (in the range of 0.60-0.70) is suggested as a critical stress level. When the cyclic stress ratio is larger than this level, the resilient modulus reaches a constant value called “asymptotic stiffness” while the permanent strain increases rapidly.



Published: 01 December 2013
CLC:  TU 443  
Cite this article:

GUO Lin, CAI Yuan-qiang, GU Chuan, WANG Jun. Resilient and permanent strain behavior of soft clay under cyclic loading. J4, 2013, 47(12): 2111-2117.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2013.12.006     OR     http://www.zjujournals.com/eng/Y2013/V47/I12/2111


循环荷载下软黏土回弹和累积变形特性

针对交通荷载循环应力水平低、循环次数大的特点,利用英国GDS公司生产的振动三轴仪在不同固结围压、不同循环应力比下对温州原状饱和软黏土进行了大周数(50 000次)不排水循环加载试验,研究了循环应力比对饱和软黏土应力-应变曲线、回弹模量和累积应变的影响.研究表明:循环应力比对饱和软黏土应力-应变曲线的形状及其发展规律影响明显.相应地,随着循环应力比的增大,回弹模量的衰减程度加大,达到稳定所需的循环次数增多.通过对50 000次循环后的回弹模量和累积应变进行分析,发现循环应力比在0.60-0.70是一个临界应力水平,当循环应力比大于该水平时,回弹模量不随循环应力比的变化而改变,达到“渐近线刚度”;而累积应变则开始迅速增长,变得不稳定.

[1] SEED H B, CHAN C K. Clay strength under earthquake loading conditions[J].
Journal of the Soil Mechanics and Foundations Divisions, ASCE, 1966, 92(2): 53-78.

[2] YASUHARA K, YAMANOUCHI T, HIRAO K. Cyclic strength and deformation of normally consolidated clay[J]. Soils and Foundations, 1982, 22(3): 77-91.

[3] YASUHARA K, HIRAO K, HYDE A F L. Effects of cyclic loading on undrained strength and compressibility of clay[J]. Soils and Foundations, 1992, 32(1): 100-116.

[4] IDRISS I M, DOBRY R, SINGH R D. Nonlinear behavior of clay soils during cyclic loading[J]. Journal of the Geotechnical Engineering Division, ASCE, 1978, 104(12): 1427-1447.

[5] VUCETIC M, DOBRY R. Degradation of marine clay under cyclic loading[J]. Journal of Geotechnical Engineering, ASCE, 1988, 114(2): 133-149.

[6] ZHOU J, GONG X N. Strain degradation of saturated clay under cyclic loading[J]. Canadian Geotechnical Journal, 2001, 38(1): 208-212.

[7] 陈颖平,黄博,陈云敏.循环荷载作用下软黏土不排水累积变形特性[J].岩土工程学报,2008,30(5): 764-768.

CHEN Ying-ping, HUANG Bo, CHEN Yun-min. Reliability analysis of high level backfill based on chaotic optimization [J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 764-768.

[8] 张勇,孔令伟,郭爱国,等.循环荷载下饱和软黏土的累积塑性应变试验研究[J].岩土力学,2009,30(6): 1542-1548.

ZHANG Yong, KONG Ling-wei, GUO Ai-guo, et al. Cumulative plastic strain of saturated soft clay under cyclic loading [J]. Rock and Soil Mechanics, 2009, 30(6): 1542-1548.

[9] 魏星,黄茂松.交通荷载作用下公路软土地基长期沉降的计算[J].岩土力学,2009,30(11): 33423346.

WEI Xing, HUANG Mao-song. A simple method to predict traffic-load-induced permanent settlement of road on soft subsoil[J]. Rock and Soil Mechanics, 2009, 30(11): 3342-3346.

[10] MATSUI T, ITO T, OHARA H. Cyclic stress-strain history and shear characteristics of clay[J]. Journal of the Geotechnical Engineering Division, ASCE, 1980, 106(10): 1101-1120.

[11] ANSAL A M, ERKEN A. Undrained behavior of clay under cyclic shear stresses[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1989, 115(7): 968-983.

[12] 刘功勋,栾茂田,郭莹,等.复杂应力条件下长江口原状饱和软黏土门槛循环应力比试验研究[J].岩土力学,2010,31(4): 1123-1129.

LIU Gong-xun, LUAN Mao-tian, GUO Ying, et al.rimental study of threshold cyclic stress ratio of undisturbed saturated soft clay in the Yangtze estuary under complex stress conditions[J]. Rock and Soil Mechanics, 2009, 31(4): 1123-1129.

[13] LAREW H G, LEONARDS G A. A strength criterion for repeated loads[J]. Highway Research Board Proceedings, 1962, 41: 529-556.

[14] 周建,龚晓南,李剑强.循环荷载作用下饱和软黏土特性试验研究[J].工业建筑,2000,30(11): 43-47.

ZHOU Jian, GONG Xiao-nan, LI Jian-qiang. Experimental study of saturated soft clay under cyclic loading [J]. Industrial Construction, 2000, 30(11): 43-47.

[15] BROWN S F. Soil mechanics in pavement engineering[J]. Geotechnique, 1996, 46(3): 383-426.

[16] FROST M W, FLEMING P R, ROGERS C D F. Cyclic triaxial tests on clay subgrades for analytical pavement design[J].Journal of Transportation Engineering, ASCE, 2004, 130(3): 378-386.

[17] SEED H B, CHAN C K, LEE C E. Resilience characteristics of subgrade soils and their relation to fatigue failures[C]∥Proceedings of International Conference on Structural Design of Asphalt Pavements. Ann Arbor, Michigan:[s.n.],1962: 611-636.

[18] 郭林,蔡袁强,王军,等.长期循环荷载下温州结构性软黏土的应变特性研究[J].岩土工程学报,2012,34(12): 2249-2254.

GUO Lin, CAI Yuan-qiang, WANG Jun, et al. Long-term cyclic strain behavior of Wenzhou structural soft clay [J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2249-2254.

[1] LIANG Meng-gen, LIANG Tian, CHEN Yun-min. Centrifuge shaking table modeling of liquefaction characteristics of free field[J]. J4, 2013, 47(10): 1805-1814.
[2] HAN Tong-chun, DOU Hong-qiang, MA Shi-guo, WANG Fu-jian. Rainwater redistribution on stability of homogenous infinite slope[J]. J4, 2013, 47(10): 1824-1829.
[3] CHEN Zhuo , ZHOU Jian, WEN Xiao-gui,TAO Yan-li. Experimental research on effect of polarity reversal to electro-osmotic[J]. J4, 2013, 47(9): 1579-1584.
[4] WU Yong, PEI Xiang-jun, HE Si-ming, LI Xin-po. Hydraulic mechanism of gully bed erosion by debris flow in rainfall[J]. J4, 2013, 47(9): 1585-1592.
[5] CAI Yuan-qiang,LIU Xin-feng,GUO Lin,SUN Hong-lei,CAO Zhi-gang. Long-term settlement of surcharge preloading foundation in soft clay area induced by aircraft loads[J]. J4, 2013, 47(7): 1157-1163.
[6] WU Shi-ming, WANG Zhan, WANG Li-zhong. Monitoring and analysis of force and deformation of large section crossing-river tunnel during operation period[J]. J4, 2013, 47(4): 595-601.
[7] WU You-xia, WANG Zhan, ZHONG Run-hui2, LI Ling-ling, FENG Zhi-hong, WANG Qi. Analysis of interaction between dust break wall piles and soil
subjected to coal loading in soft foundation
[J]. J4, 2013, 47(3): 502-507.
[8] LIN Cun-gang, ZHANG Zhong-miao, WU Shi-ming, CUI Ying-hui. Influences of grouting heave on overlying structures in shield tunneling[J]. J4, 2012, 46(12): 2215-2223.
[9] XU Chang-jie, LI Bi-qing, CAI Yuan-qiang. Bearing behaviors of self-balanced pile[J]. J4, 2012, 46(7): 1262-1268.
[10] HU An-feng, HUANG Jie-qing, XIE Xin-yu, WU Jian, LI Jin-zhu, LIU Kai-fu. Study on properties of one-dimensional complex
nonlinear consolidation considering selfweight of saturated soils
[J]. J4, 2012, 46(3): 441-447.
[11] HAN Tong-chun, HUANG Fu-ming. Rainfall infiltration process and stability analysis of two-layered slope[J]. J4, 2012, 46(1): 39-45.
[12] SUN De-An, CHEN Li-Wen, JUAN Wen-Zhan. Bifurcation analysis of water-soil coupled overconsolidated clay
under plane strain condition
[J]. J4, 2010, 44(10): 1938-1943.
[13] LI Ren-Min, LIU Song-Yu, FANG Lei, DU Yan-Jun. Micro-structure of clay generated by quartet structure generation set[J]. J4, 2010, 44(10): 1897-1901.