Please wait a minute...
J4  2013, Vol. 47 Issue (9): 1585-1592    DOI: 10.3785/j.issn.1008-973X.2013.09.011
    
Hydraulic mechanism of gully bed erosion by debris flow in rainfall
WU Yong1,2,3, PEI Xiang-jun3, HE Si-ming1, LI Xin-po1,3
1. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China|
2. State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining and
Technology, Xuzhou 221008, China|3. State Key Laboratory of Geohazard Prevention and Geoenvironment Protention,
Chengdu University of Technology, Chengdu 610041, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Based on the water lever model of debris flow established according to hydrology, and by aid of hydraulic theory, the erosion mechanism of gully bed under flow shear stress and seepage hydraulic was studied. After studying the calculation methods for flow shear stress, pore water pressure, static pressure and gully bed weight, the critical erosion depth of gully bed by debris flow was proposed. By discussing the influences of rainfall pattern, gully geometric parameters and flow property to debris flow pattern and its erosion characteristics with an example, the way to calculate erosion was illustrated. The result indicates that the erosion becomes weak with the incensement of depth of base material, and only occurs above on a critical erosion depth in gully bed|with different rainfall conditions, gully geometric character and debris flow property, the flow depth and velocity changes greatly, which effects the gully bed erosion directly.



Published: 01 September 2013
CLC:  TU 443  
Cite this article:

WU Yong, PEI Xiang-jun, HE Si-ming, LI Xin-po. Hydraulic mechanism of gully bed erosion by debris flow in rainfall. J4, 2013, 47(9): 1585-1592.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2013.09.011     OR     http://www.zjujournals.com/eng/Y2013/V47/I9/1585


降雨型泥石流对沟床侵蚀的水力学机理

为解决降雨型泥石流对沟床的侵蚀和重塑机理,以水文学为基础,在科学表征泥石流流深的前提下,借助水力学理论,分析了沟床在泥石流流动剪切和渗流水压耦合作用下的侵蚀机理,研究了泥石流流动剪应力、沟床基质孔压、泥石流静压及沟床自重作用的计算方法,给出了沟床侵蚀临界深度表达;借助算例阐明了流域降雨特征、沟道几何参数以及泥石流性质对泥石流流态及侵蚀力的影响规律,展示了沟道侵蚀曲线和侵蚀量的计算方法.结果表明:(1)泥石流侵蚀能力随沟床基质埋深的增加而下降,并在临界深度处消失;(2)不同降雨条件、沟谷特征和泥石流性质下的临界侵蚀深度因流深流速的差异而不同,越利于流深流速增大的流域沟道条件则越利于侵蚀的进行.

[1] 吴积善, 田连权, 康志成, 等. 泥石流及其综合治理[M]. 北京: 科学出版社, 1993: 27-33.
[2] 徐永年, 匡尚富, 黄永健, 等. 崩塌土流动化机理的实验研究 [J]. 水利学报, 2002(10): 87-90.
XU Yong-nian, KUANG Shang-fu, HUANG Yong-jian, et al. Experimental study on flow mechanism of avalanche soils[J]. Journal of Hydraulic Engineering, 2002(10): 87-90.
[3] 王裕宜, 詹钱登, 邹仁元, 等. 黏性泥石流体阵性流形成机理研究 [J]. 自然灾害学报, 2002,11(2): 46-50.
WANG Yu-yi, JAN Chyan-deng, ZOU Ren-yuan, et al. Study on forming mechanism of viscous debris flow surges [J]. Journal of Natural Disasters, 2002, 11(2): 46-50.
[4] 费祥俊, 舒安平. 泥石流运动机理与灾害防治 [M]. 北京: 清华大学出版社, 2004: 155-162.
[5] 陈光曦, 王继康, 王林海. 泥石流防治 [M]. 北京:中国铁道出版社, 1983: 40-62.
[6] 田连权, 吴积善, 康志成, 等. 泥石流侵蚀搬运与堆积[M] . 成都: 成都地图出版社, 1993: 96-118.
[7] 何思明, 吴永, 李新坡. 黏性泥石流沟道侵蚀启动机制研究 [J]. 岩土力学, 2007, 28(suppl.): 155-159.
HE Si-ming, WU Yong, LI Xin-po. Study on eroded start mechanism of channel debris flow [J]. Rock and Soil Mechanics, 2007, 28(suppl.): 155-159.
[8] YAIR A, KLEIN M. The influence of surface properties on flow and erosion processes on debris covered slopes in an arid area [J]. Catena, 1973, 1: 1-18.
[9] 刘青泉, 陈力, 李家春. 坡度对坡面土壤侵蚀的影响分析 [J]. 应用数学和力学, 2001, 22(5): 510-519.
LIU Qing-quan, CHEN Li, LI Jia-chun. Influences of slope gradient on soil erosion [J]. Applied Mathematics and Mechanics, 2001, 22(5): 510-519.
[10] 郑粉莉. 发生细沟侵蚀的临界坡长与坡度 [J]. 中国水土保持, 1989(8): 23-24.
ZHENG Fen-li. The critical slope of Rill erosion [J]. China Soil and Water Conservation, 1989(8): 23-24.
[11] HORTON R E. Erosional development of streams and their drainage basins: hydro-physical approach to quantitative morphology\
[J\]. Bulletin Geological Society America, 1945, 56(2): 275-370.
[12] BEAR J. Hydraulics of ground water [M]. New York: McGraw-Hill, 1979: 125-129.
[13] 李家星, 赵振兴. 水力学 [M]. 南京: 河海大学出版社, 2001:192-196.
[14] DRAGO M. A coupled debris flow–turbidity current model [J]. Ocean Engineering, 2002, 29: 1769-1780.
[15] OLDRICH Hungr, SCOTT Mcdougall. Two numerical models for landslide dynamic analysis [J]. Computers & Geosciences, 2009, 35: 978-992.
[16] SKEMPTON A W. The pore-pressure coefficients A and B\
[J\]. Geotechnique, 1954, 4: 143-147.
[17] HOTTA N, OHTA T. Pore-water pressure of debris flows [J]. Physical and Chemistry of the Earth (B), 2000, 25(4): 381-385.
[18] 刘希林, 吕学军, 苏鹏程. 四川汶川茶园沟泥石流灾害特征及危险度评价 [J]. 自然灾害学报, 2004, 13(1): 66-71.
LIU Xi-lin, LU Xue-jun, SU Peng-cheng. Characteristics and hazard assessment of debris flow in Chayuan Gully of Wenchuan County in Sichuan [J]. Journal of Natural Disasters, 2004, 13(1): 66-71.

[1] GUO Lin, CAI Yuan-qiang, GU Chuan, WANG Jun. Resilient and permanent strain behavior of soft clay under cyclic loading[J]. J4, 2013, 47(12): 2111-2117.
[2] LIANG Meng-gen, LIANG Tian, CHEN Yun-min. Centrifuge shaking table modeling of liquefaction characteristics of free field[J]. J4, 2013, 47(10): 1805-1814.
[3] HAN Tong-chun, DOU Hong-qiang, MA Shi-guo, WANG Fu-jian. Rainwater redistribution on stability of homogenous infinite slope[J]. J4, 2013, 47(10): 1824-1829.
[4] CHEN Zhuo , ZHOU Jian, WEN Xiao-gui,TAO Yan-li. Experimental research on effect of polarity reversal to electro-osmotic[J]. J4, 2013, 47(9): 1579-1584.
[5] CAI Yuan-qiang,LIU Xin-feng,GUO Lin,SUN Hong-lei,CAO Zhi-gang. Long-term settlement of surcharge preloading foundation in soft clay area induced by aircraft loads[J]. J4, 2013, 47(7): 1157-1163.
[6] WU Shi-ming, WANG Zhan, WANG Li-zhong. Monitoring and analysis of force and deformation of large section crossing-river tunnel during operation period[J]. J4, 2013, 47(4): 595-601.
[7] WU You-xia, WANG Zhan, ZHONG Run-hui2, LI Ling-ling, FENG Zhi-hong, WANG Qi. Analysis of interaction between dust break wall piles and soil
subjected to coal loading in soft foundation
[J]. J4, 2013, 47(3): 502-507.
[8] LIN Cun-gang, ZHANG Zhong-miao, WU Shi-ming, CUI Ying-hui. Influences of grouting heave on overlying structures in shield tunneling[J]. J4, 2012, 46(12): 2215-2223.
[9] XU Chang-jie, LI Bi-qing, CAI Yuan-qiang. Bearing behaviors of self-balanced pile[J]. J4, 2012, 46(7): 1262-1268.
[10] HU An-feng, HUANG Jie-qing, XIE Xin-yu, WU Jian, LI Jin-zhu, LIU Kai-fu. Study on properties of one-dimensional complex
nonlinear consolidation considering selfweight of saturated soils
[J]. J4, 2012, 46(3): 441-447.
[11] HAN Tong-chun, HUANG Fu-ming. Rainfall infiltration process and stability analysis of two-layered slope[J]. J4, 2012, 46(1): 39-45.
[12] SUN De-An, CHEN Li-Wen, JUAN Wen-Zhan. Bifurcation analysis of water-soil coupled overconsolidated clay
under plane strain condition
[J]. J4, 2010, 44(10): 1938-1943.
[13] LI Ren-Min, LIU Song-Yu, FANG Lei, DU Yan-Jun. Micro-structure of clay generated by quartet structure generation set[J]. J4, 2010, 44(10): 1897-1901.