Please wait a minute...
J4  2010, Vol. 44 Issue (10): 1897-1901    DOI: 10.3785/j.issn.1008-973X.2010.10.009
    
Micro-structure of clay generated by quartet structure generation set
LI Ren-min, LIU Song-yu, FANG Lei, DU Yan-jun
Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

It’s very difficult to construct the complex microstructure of clay. A multiparameter random generationgrowth method, quartet structure generation set (QSGS) was introduced to model the microstructure of clay. The basic principle of QSGS was introduced, and the generation step of QSGS was constructed. The corresponding procedures were compiled with Matlab and AutoCAD VBA. The impact of the structure of clay microstructure on groundwater seepage was discussed by a case study. The microstructure of clay generated by QSGS can be directly imported into finite element method, and many issues of the microscale can be analyzed by numerical analysis software. The size distribution, shapes, micropore structure, circuitous of the constructed clay particle were quite similar to the real microstructure of clay.



Published: 01 October 2010
CLC:  TU 443  
Cite this article:

LI Ren-Min, LIU Song-Yu, FANG Lei, DU Yan-Jun. Micro-structure of clay generated by quartet structure generation set. J4, 2010, 44(10): 1897-1901.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2010.10.009     OR     http://www.zjujournals.com/eng/Y2010/V44/I10/1897


采用随机生长四参数生成法构造黏土微观结构

针对黏土微观结构复杂、构造困难的问题,采用随机生长四参数生成法构造黏土微观结构.介绍随机生长四参数生成法,构造黏土微观结构的基本原理和详细的生成步骤,联合应用Matlab和AutoCAD VBA编制相应的程序,讨论构造的黏土微观结构对地下水渗流的影响.程序生成的微观结构可以直接导入有限元程序,便于采用数值分析软件研究微观结构相关问题.构造的黏土颗粒大小分布、形状各异,孔隙结构微小,迂回曲折,与真实的黏土微观结构相似.

[1] 王唯威.分形多孔介质内导热与流动数值模拟研究[D].北京:中国科学院工程热物理研究所,2006: 19-32.
WANG Weiwei. Numerical study of heat conduction in fractal porous media [D].Beijing: Institute of Engineering Thermophysics, CAS, 2006: 19-32.
[2] TACHER L, PERROCHET P, PARRIAUX A. Generation of granular media [J]. Transport in Porous Media, 1997, 26(1): 99-107.
[3] PILOTTI M. Generation of realistic porous media by grains sedimentation [J]. Transport in Porous Media, 1998, 33(3): 257-278.
[4] 刘勇军,朱岳明,丰土根,等.随机土体结构模型理论及应用[J].岩土工程学报,2001,23(3):354-357.
LIU Yongjun, ZHU Yueming, FENG Tugen, et al. Study on random soil frame model and its application [J]. Chinese Journal of Geotechnical Engineering, 2001, 23(3): 354-357.
[5] WANG M, PAN N. Numerical analyses of effective dielectric constant of multiphase microporous media [J].Journal of Applied Physics, 2007, 101(11): 114102-1-114102-8.
[6] NARSILIO G A, BUZZI O P, FITYUS S G, et al. Upscaling of NavierStokes equations in porous media: theoretical, numerical and experimental approach [J]. Computers and Geotechnics, 2009, 36: 1200-1206.
[7] 张国宝.AutoCAD2000VBA开发技术\
[M\].北京:清华大学出版社,2000: 20-37.
[8] 薛定谔A E.多孔介质中的渗流物理\
[M\].王鸿勋,张朝琛,孙书琛,译.北京:石油工业出版社,1982: 70-82.
[9] 李仁民,刘松玉.Femlab软件及其在岩土工程中的应用\
[J\].中外公路,2007,27(6): 7-10.
LI Renmin, LIU Songyu. Modeling and solving geotechnical physics problems with FEMLAB \
[J\]. Journal of China and Foreign Highway, 2007, 27(6): 7-10.
[10] PIVONKA P, NARSILIO G A, LI Renmin, et al. Electrodiffusive transport in charged porous media: from the particlelevel scale to the macroscopic scale using volume averaging [J]. Journal of Porous Media, 2009, 12(2): 101-118.

[1] GUO Lin, CAI Yuan-qiang, GU Chuan, WANG Jun. Resilient and permanent strain behavior of soft clay under cyclic loading[J]. J4, 2013, 47(12): 2111-2117.
[2] LIANG Meng-gen, LIANG Tian, CHEN Yun-min. Centrifuge shaking table modeling of liquefaction characteristics of free field[J]. J4, 2013, 47(10): 1805-1814.
[3] HAN Tong-chun, DOU Hong-qiang, MA Shi-guo, WANG Fu-jian. Rainwater redistribution on stability of homogenous infinite slope[J]. J4, 2013, 47(10): 1824-1829.
[4] CHEN Zhuo , ZHOU Jian, WEN Xiao-gui,TAO Yan-li. Experimental research on effect of polarity reversal to electro-osmotic[J]. J4, 2013, 47(9): 1579-1584.
[5] WU Yong, PEI Xiang-jun, HE Si-ming, LI Xin-po. Hydraulic mechanism of gully bed erosion by debris flow in rainfall[J]. J4, 2013, 47(9): 1585-1592.
[6] CAI Yuan-qiang,LIU Xin-feng,GUO Lin,SUN Hong-lei,CAO Zhi-gang. Long-term settlement of surcharge preloading foundation in soft clay area induced by aircraft loads[J]. J4, 2013, 47(7): 1157-1163.
[7] WU Shi-ming, WANG Zhan, WANG Li-zhong. Monitoring and analysis of force and deformation of large section crossing-river tunnel during operation period[J]. J4, 2013, 47(4): 595-601.
[8] WU You-xia, WANG Zhan, ZHONG Run-hui2, LI Ling-ling, FENG Zhi-hong, WANG Qi. Analysis of interaction between dust break wall piles and soil
subjected to coal loading in soft foundation
[J]. J4, 2013, 47(3): 502-507.
[9] LIN Cun-gang, ZHANG Zhong-miao, WU Shi-ming, CUI Ying-hui. Influences of grouting heave on overlying structures in shield tunneling[J]. J4, 2012, 46(12): 2215-2223.
[10] XU Chang-jie, LI Bi-qing, CAI Yuan-qiang. Bearing behaviors of self-balanced pile[J]. J4, 2012, 46(7): 1262-1268.
[11] HU An-feng, HUANG Jie-qing, XIE Xin-yu, WU Jian, LI Jin-zhu, LIU Kai-fu. Study on properties of one-dimensional complex
nonlinear consolidation considering selfweight of saturated soils
[J]. J4, 2012, 46(3): 441-447.
[12] HAN Tong-chun, HUANG Fu-ming. Rainfall infiltration process and stability analysis of two-layered slope[J]. J4, 2012, 46(1): 39-45.
[13] SUN De-An, CHEN Li-Wen, JUAN Wen-Zhan. Bifurcation analysis of water-soil coupled overconsolidated clay
under plane strain condition
[J]. J4, 2010, 44(10): 1938-1943.