Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (8): 1485-1494    DOI: 10.3785/j.issn.1008-973X.2022.08.002
Code development and verification for weak coupling of seepage-stress based on TOUGH2 and FLAC3D
Xia-lin LIU1(),Sheng-bin ZHANG1,Quan CHEN2,Heng SHU1,Shang-ge LIU3
1. CCCC Second Highway Consultants Limited Company, Wuhan 430056, China
2. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
3. China GEZHOUBA Group International Engineering Co. Ltd, Beijing 100025
Download: HTML     PDF(1589KB) HTML
Export: BibTeX | EndNote (RIS)      


Traditional and new geotechnical engineering problems such as compressed air energy storage, intercepting water with compressed air, carbon dioxide sequestration and oil and gas underground reserve project are all involving air-water two-phase flow and stress coupling problems. For this engineering reality, based on the weak coupling theory of gas-water two-phase seepage and stress in unsaturated soil, a air-water two-phase percolation-stress coupling calculation program based on coupled TOUGH2 and FLAC3D was developed. The calculation program can simulate real air-water two phase flow, and can investigate the gas-water interaction of seepage process. The calculation program considers the direct interaction between gas-water two-phase seepage and soil skeleton deformation, reflects the process of porosity, permeability, capillary pressure and the change of soil physical and mechanical parameters, and achieve a more perfect gas-water two-phase seepage-stress coupling analysis. Furthermore, by comparing with classical drainage test and model test, it is verified that the program can accurately simulate the gas-water two-phase flow-stress interaction.

Key wordsunsaturated soil      air-water two-phase flow      fluid-structure interaction      weak coupling      TOUGH2-FLAC3D     
Received: 28 July 2021      Published: 30 August 2022
CLC:  TU 443  
Fund:  新疆维吾尔自治区重大科技专项(2020A03003, 2020A03003-1);中交集团重点专项(2020-ZJKJ-ZDZX01);中国博士后科学基金课题(2022M712978)
Cite this article:

Xia-lin LIU,Sheng-bin ZHANG,Quan CHEN,Heng SHU,Shang-ge LIU. Code development and verification for weak coupling of seepage-stress based on TOUGH2 and FLAC3D. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1485-1494.

URL:     OR


传统、新型岩土工程问题诸如压缩空气含水层储能、充气截排水技术、二氧化碳地质封存、油气地下储备工程等均涉及气水两相流与应力耦合. 针对这一工程实际,根据非饱和土气水两相渗流-应力弱耦合理论,开发了基于TOUGH2与FLAC3D的气水两相渗流-应力耦合计算搭接程序. 该计算程序能够较为真实地模拟气水两相渗流问题,能够探讨流动过程中气水的相互作用及其对过程的影响. 程序考虑了气水两相渗流与土体骨架变形直接的相互作用,反映了这一过程中孔隙度、渗透率、毛管压力和土体物理力学参数的变化,实现了更为完善的气水两相渗流与应力弱耦合分析. 通过与经典的排水试验和模型试验对比,验证了该程序可以较为准确地模拟气水两相流-应力之间的相互作用.

关键词: 非饱和土,  气水两相流,  流固耦合,  弱耦合,  TOUGH2-FLAC3D 
Fig.1 Schematic of TOUGH2-FLAC3D coupled simulation framework
Fig.2 Programe structure of coupled TOUGH2 and FLAC3D
Fig.3 Schematic of grid transformation for TOUGH2 and FLAC3D
Fig.4 Coupled simulation procedure of TOUGH2 and FLAC3D
Fig.5 Iterative computing process of TOUGH2 and FLAC3D
Fig.6 Schematic of Liakopoulos drainage experiment
变量 单位 数值
E MPa 1.3
$ \nu $ ? 0.4
$ \rho $ kg/m3 2 850
$ \varphi $ ? 0.297 5
$ {p}_{\mathrm{a}\mathrm{t}\mathrm{m}} $ Pa 1.013×105
$ k $ m2 4.5×10?13
Tab.1 Soil mechanical parameters of drainage test
Fig.7 Results of pore-water pressure head varying with time at different heights
Fig.8 Pore-water pressure head at different moments along height direction
Fig.9 Time evolution of outflow of rate of water
Fig.10 Model of slope experiment
Fig.11 Schematic of tensiometers buried
变量 单位 数值
${\gamma }_{{\rm{d}}}$ kN/m3 14.81
${G}_{{\rm{s}}}$ ? 2.70
c kPa 0
$\mathrm{\phi }_{\rm{e}}$ ° 34.3
${k}_{{\rm{sat}}}$ m/s 3.32×10?5
α m?1 3.631
n ? 2.408
${\varphi }_{ {\rm{s} } }$ ? 0.444
${\varphi }_{ {\rm{r} } }$ ? 0.048
Tab.2 Soil parameters of model test
Fig.12 Comparison between model experimental and calculated data     
[1]   KING F H Contributions to our knowledge of the aeration of soils[J]. Science, 1905, 22 (564): 495- 499
doi: 10.1126/science.22.564.495
[2]   RICHARDS L A Capillaiy conduction of liquids through porous mediums[J]. Physics, 1931, 1 (5): 318- 333
doi: 10.1063/1.1745010
[3]   CELIA M A, BINNING P A mass conservative numerical solution for two-phase flow in porous media with application to unsaturated flow[J]. Water Resources Research, 1992, 28 (10): 2819- 2828
doi: 10.1029/92WR01488
[4]   黄润秋, 戚国庆 非饱和渗流基质吸力对边坡稳定性的影响[J]. 工程地质学报, 2002, (4): 343- 348
HUANG Run-qiu, QI Guo-qing The effect of unsaturated soil suction on slope stability[J]. Journal of Engineering Geology, 2002, (4): 343- 348
doi: 10.3969/j.issn.1004-9665.2002.04.002
[5]   CAI F, UGAI K Numerical analysis of rainfall effects on slope stability[J]. International Journal of Geomechanics, 2004, 4 (2): 69- 78
doi: 10.1061/(ASCE)1532-3641(2004)4:2(69)
[6]   荣冠, 张伟, 周创兵 降雨入渗条件下边坡岩体饱和非饱和渗流计算[J]. 岩土力学, 2005, (10): 24- 29
RONG Guan, ZHANG Wei, ZHOU Chuang-bing Numerical analysis of saturated-unsaturated seepage problem of rock slope under rainfall infiltration[J]. Rock and Soil Mechanics, 2005, (10): 24- 29
doi: 10.3969/j.issn.1000-7598.2005.10.005
[7]   孙冬梅, 朱岳明, 张明进 非饱和带水-气二相流数值模拟研究[J]. 岩土工程学报, 2007, 29 (4): 560- 565
SUN Dong-mei, ZHU Yue-ming, ZHANG Ming-jin Study on numerical model for water-air two-phase flow in unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29 (4): 560- 565
[8]   BORJA R I, WHITE J A. Continuum deformation and stability analyses of a steep hillside slope under rainfall infiltration [J]. Acta Geotechnica. 2010, 5: 1–14.
[9]   BORJA R I, WHITE J A, LIU X, et al Factor of safety in a partially saturated slope inferred from hydro-mechanical continuum modeling[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36 (2): 236- 248
doi: 10.1002/nag.1021
[10]   彭胜, 陈家军, 王金生, 等 非饱和带水气二相流实验研究[J]. 土壤学报, 2002, 39 (4): 505- 511
PENG Sheng, CHEN Jia-jun, WANG Jin-sheng, et al Two-phase flow in soil vadose zone[J]. Acta Pedologica Sinica, 2002, 39 (4): 505- 511
[11]   RUTQVIST J, WU Y S, TSANG C F, et al A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock[J]. International Journal of Rock Mechanics and Mining Science, 2002, 39: 429- 442
doi: 10.1016/S1365-1609(02)00022-9
[12]   GOSAVI S, SWENSON D. Architecture for a coupled code for multiphase fluid flow, heat transfer and deformation in porous rock [C]// Proceedings of the 30th Workshop on Geothermal Reservoir Engineering Stanford University. Palo Alto: Stanford, 2005.
[13]   HURWITZ S, CHRISTIANSEN L B, HSIEH P A. Hydrothermal fluid flow and deformation in large calderas: inferences from numerical simulations[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(BO2206): 1–16 .
[14]   TARON J, ELSWORTH D, MIN K B Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable, fractured porous media[J]. International Journal of Rock Mechanics and Mining Science, 2009, 46: 842- 854
doi: 10.1016/j.ijrmms.2009.01.008
[15]   ROHMER J, SEYEDI D M Coupled large scale hydromechanical modelling for caprock failure risk assessment of CO2 storage in deep saline aquifers [J]. Oil and Gas Science and Technology, 2010, 65 (3): 485- 502
doi: 10.2516/ogst/2010006
[16]   KIM J, MORIDIS G Development of the T+M coupled flow-geomechanical simulator to describe fracture propagation and coupled flow-thermal-geomechanical processes in tight/shale gas systems[J]. Computers and Geosciences, 2013, 60: 184- 198
doi: 10.1016/j.cageo.2013.04.023
[17]   PAN P Z, RUTQVIST J, FENG X T, et al Modeling of caprock discontinuous fracturing during CO2 injection into a deep brine aquifer [J]. International Journal of Greenhouse Gas Control, 2013, 19: 559- 575
doi: 10.1016/j.ijggc.2013.10.016
[18]   LEE J, MIN K B, RUTQVIST J. TOUGH-UDEC simulator for the coupled multiphase fluid flow, heat transfer, and deformation in fractured porous media [C]// 13th ISRM International Congress of Rock Mechanics. Quebec: OnePetro, 2015.
[19]   LEI H, XU T, JIN G TOUGH2Biot: a simulator for coupled thermal-hydrodynamic-mechanical processes in subsurface flow systems: application to CO2 geological storage and geothermal development [J]. Computers and Geosciences, 2015, 77 (C): 8- 19
[20]   PARK J W, PARK E S, LEE C DECOVALEX-2019 Task B fault reactivation modeling using coupled TOUGH2 and FLAC3D interface model: DECOVALEX-2019 task B[J]. Tunnel and Underground Space, 2020, 30 (4): 335- 358
[21]   AN C, HAN Y, LIU H H, et al Development and verification of an enhanced equation of state in TOUGH2[J]. Journal of Verification, Validation and Uncertainty Quantification, 2021, 6 (2): 021004
doi: 10.1115/1.4050529
[22]   TOUMA J, VAUCLIN M Experimental and numerical analysis of two-phase infiltration in a partially saturated soil[J]. Transport in Porous Media, 1986, 1 (1): 27- 55
doi: 10.1007/BF01036524
[23]   PRUNTY L, BELL J Infiltration rate vs. gas composition and pressure in soil columns[J]. Soil Science Society of America Journal, 2007, 71 (5): 1473- 1475
doi: 10.2136/sssaj2007.0072N
[24]   SUN D M, ZANG Y G, SEMPRICH S Effects of airflow induced by rainfall infiltration on unsaturated soil slope stability[J]. Transport in Porous Media, 2015, 107 (3): 821- 841
doi: 10.1007/s11242-015-0469-x
[25]   PRUESS K The TOUGH codes: a family of simulation tools for multiphase flow and transport processes in permeable media[J]. Vadose Zone Journal, 2004, 3 (3): 738- 746
[26]   DETOURNAY C, HART R. FLAC and numerical modeling in geomechanics [C]// Proceedings of the International FLAC Symposium on Numerical Modeling in Geomechanics. Minneapolis: Balkema, 1999.
[27]   COUSSY O. Mechanics of porous continua [M]// New York: Wiley, 1995.
[28]   BARY B. Coupled hydro-mechanical and damage model for concrete as an unsaturated porous medium [C]// Proceedings of the 15th ASCE Engineering Mechanical Conference. New York: Columbia University, 2002: 1-8.
[29]   CHAPUIS R P, AUBERTIN M On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils[J]. Revue Canadienne De Géotechnique, 2003, 40 (3): 616- 628
[30]   LEVERETT M C Capillary behavior in porous solids[J]. Transactions of the AIME, 1941, 142 (1): 152- 169
doi: 10.2118/941152-G
[31]   LIAKOPOULOS A C. Transient flow through unsaturated porous media [D]// Berkeley: University of California, Berkeley, 1965.
[32]   LEWIS R W, SCHREFLER B A. The finite element method in the deformation and consolidation of porous media [M]// New York: John Wiley and Sons, 1987.
[33]   SCHREFLER B A, ZHAN X Y A fully coupled model for water flow and airflow in deformable porous media[J]. Water Resources Research, 1993, 29 (1): 155- 167
doi: 10.1029/92WR01737
[34]   GAWIN D, BAGGIO P, SCHREFLER B A Coupled heat, water and gas flow in deformable porous media[J]. International Journal for Numerical Methods in Fluids, 1995, 20 (8/9): 969- 987
[35]   GAWIN D, SCHREFLER B A, GALINDO M Thermo-hydro-mechanical analysis of partially saturated porous materials[J]. Engineering Computations, 1996, 13 (7): 113- 143
doi: 10.1108/02644409610151584
[36]   SCHREFLER B A, SCOTTA R A fully coupled dynamic model for two-phase fluid flow in deformable porous media[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190 (24/25): 3223- 3246
[37]   EHLERS W, GRAF T, AMMANN M Deformation and localization analysis of partially saturated soil[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193 (27–29): 2885- 2910
doi: 10.1016/j.cma.2003.09.026
[38]   NAGEL F, MESCHKE G An elasto-plastic three phase model for partially saturated soil for the finite element simulation of compressed air support in tunnelling[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34 (6): 605- 625
doi: 10.1002/nag.828
[39]   HU R, CHEN Y F, ZHOU C B Modeling of coupled deformation, water flow and gas transport in soil slopes subjected to rain infiltration[J]. Science China Technological Sciences, 2011, 54 (10): 2561- 2575
doi: 10.1007/s11431-011-4504-z
[40]   BROOKS R H, COREY A T Properties of porous media affecting fluid flow[J]. Journal of the Irrigation and Drainage Division, 1966, 92 (2): 61- 88
doi: 10.1061/JRCEA4.0000425
[41]   林鸿州. 降雨诱发土质边坡失稳的试验与数值分析研究[D]. 北京: 清华大学, 2007.
LIN Hong-zhou. The study on the mechanism and numerical analysis of rainfall-induced soil slope failure [D]// Beijing: Tsinghua University, 2007.
[1] Ke-lai YU,Zhen-jun YANG,Xin ZHANG,Guo-hua LIU,Hui LI. Hydraulic fracturing modeling of quasi-brittle materials based on pore pressure cohesive interface elements[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2151-2160.
[2] Shuo HUANG,Shuang-qiang WANG,Peng WANG,Gui-yong ZHANG. Comparative study of application of smoothed point interpolation method in fluid-structure interactions[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1645-1654.
[3] KONG Ling-gang, YAO Hong-bo, ZHAN Ling-tong, CHEN Yun-min. Effect of water content on failure modes of evapotranspiration landfill cover[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 847-855.
[4] ZOU Wei-lie, HE Yang, ZHANG Feng-De, WANG Dong-xing, WANG Shuai, WANG Yuan-ming. Experimental study on unsaturated permeability characteristics of solidified sediment stabilized with cement[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2182-2188.
[5] LI Meng-xuan, WU Jia, ZHENG Shui-ying, YING Guang-yao, LIU Shu-lian. Stability of bearing-rotor system with different bearing structures[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2239-2248.
[6] LI Qiang, LIU Shu-lian , YING Guang-yao, ZHENG Shui-ying. Numerical simulation for drop impact of PET bottle
considering fluid-structure interaction
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(6): 980-986.
[7] LI Qiang, LIU Shu-lian, YU Gui-chang, PAN Xiao-hong, ZHENG Shui-ying. Lubrication and stability analysis of nonlinear rotor-bearing system[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(10): 1729-1736.
[8] SU Mo-Xin, XIE Kang-He. Computation of one-dimensional consolidation of unsaturated soil with linear soil-water characteristic curve[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(1): 150-155.