Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (8): 1495-1503    DOI: 10.3785/j.issn.1008-973X.2022.08.003
    
Seismic reliability analysis of substation system based on adjacency matrix
Xiao-hang LIU1,2(),Shan-suo ZHENG1,2,Yu HUANG3,Shu-qing DONG3,Feng YANG4,Jin-qi DONG1,2
1. School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2. Key Lab of Structural Engineering and Earthquake Resistance, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an 710055, China
3. Shaanxi Electric Power Design Institute Co. Ltd, Xi’an 710055, China
4. China Qiyuan Engineering Corporation, Xi’an 710055, China
Download: HTML     PDF(2031KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A reliability evaluation process based on adjacency matrix was proposed to analyze substation system, aiming at the problem of computational efficiency in the post evaluation of substation system. The edge weight model established by the adjacency matrix can intuitively reflect the logical relationship between the system units and the equipment. The quasi-Warshall algorithm efficiently solves the connectivity matrix by Boolean operations on the adjacency matrix elements, thereby calculating the functional status of the entire system by the Quasi-Monte Carlo simulation method. A typical 220/110/10 kV substation with 6 incoming lines and 10 outgoing lines was studied based on this evaluation process. Its seismic reliability was calculated and the key seismic equipment was determined. The case analysis results showed that the system evaluation idea based on adjacency matrix was feasible. 220 kV voltage transformers, circuit breakers, isolating switches and 110 kV isolating switches were assessed as the most critical functional equipment in the substation system. Improving their seismic performance can significantly improve the seismic reliability of the entire substation system.



Key wordsQuasi-Monte Carlo simulation      substation system      basic network model      seismic reliability      key equipment identification     
Received: 15 August 2021      Published: 30 August 2022
CLC:  P 315.9  
Fund:  国家重点研发计划资助项目(2019YFC1509302);陕西省重点研发计划资助项目(2021ZDLSF06-10);西安市科技计划资助项目(2019113813CXSF016SF026)
Cite this article:

Xiao-hang LIU,Shan-suo ZHENG,Yu HUANG,Shu-qing DONG,Feng YANG,Jin-qi DONG. Seismic reliability analysis of substation system based on adjacency matrix. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1495-1503.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.08.003     OR     https://www.zjujournals.com/eng/Y2022/V56/I8/1495


基于邻接矩阵法的变电站系统抗震可靠性分析

针对变电站系统后评估过程中的计算效率问题,提出基于邻接矩阵的可靠性评估流程用以分析变电站系统. 邻接矩阵所建立的边权模型能够直观地反映系统单元和设备间的逻辑关系,拟Warshall算法通过对邻接矩阵元素的布尔运算高效求解连通性矩阵,从而以Quasi-Monte Carlo模拟方法计算出整个系统的功能状态. 基于此评估流程研究了一个典型的6进线10出线220/110/10 kV变电站,计算其抗震可靠性并确定了抗震关键设备. 案例分析结果表明,基于邻接矩阵的系统评估思路是可行的,220 kV的电压互感器、断路器、隔离开关及110 kV的隔离开关被评定为变电站系统中最关键的功能设备,提高它们的抗震性能可以显著提高整个变电站系统的抗震可靠性.


关键词: 拟蒙特卡洛模拟,  变电站系统,  基本网络模型,  抗震可靠性,  关键设备识别 
Fig.1 Facility layout of a typical 220 kV substation
Fig.2 Seismic fragility curves of power supply facilities based on empirical statistics of earthquake damage
Fig.3 220 kV part of substation system
Fig.4 Bus coupler part of substation system
Fig.5 110 kV part of substation system
Fig.6 Transformer part of substation system
Fig.7 Line-in and line-out unit of substation system
Fig.8 Connection unit and bus coupler unit of substation system
Fig.9 Bus unit of substation system
Fig.10 Transformer unit of substation system
Fig.11 Logic diagram of substation system based on functional unit
Fig.12 Logic diagram of substation system simplified based on edge weight model
Fig.13 Simulation process of substation system based on adjacency matrix method
Fig.14 Vulnerability of different functions of substation system
Fs mc sd R2 RMSE
0 0.295 230 0.206 9 0.999 4 0.010 61
1/10 0.295 230 0.206 7 0.999 5 0.010 71
2/10 0.269 012 0.199 2 0.999 5 0.010 09
3/10 0.269 012 0.199 1 0.999 5 0.010 20
4/10 0.235 746 0.216 9 0.999 2 0.012 38
5/10 0.208 670 0.224 3 0.999 3 0.011 49
6/10 0.183 232 0.249 3 0.998 9 0.014 53
7/10 0.182 501 0.244 9 0.998 8 0.015 24
8/10 0.144 136 0.326 9 0.996 1 0.024 97
9/10 0.135 742 0.321 6 0.996 8 0.022 41
Tab.1 Median capacity and standard deviation of different functions of substation system
Fig.15 Frequency of appearance of different functions of substation system
Fig.16 Changes in median capacity of seismic vulnerability curve of substation system (110 kV equipment and pillar insulators)
Fig.17 Logarithmic standard deviation change of seismic vulnerability curve of substation system (110 kV equipment and pillar insulators)
Fig.18 Change in median capacity of seismic vulnerability curve of substation system (220 kV equipment)
Fig.19 Changes in logarithmic standard deviation of seismic vulnerability curve of substation system (220 kV equipment)
[1]   LI L, WANG W T, SHI P P Modelling catastrophic degradation of flexural-dominated RC columns at ultimate displacements based on fibre beam-column model[J]. Journal of Building Engineering, 2022, 45: 103476
doi: 10.1016/j.jobe.2021.103476
[2]   LI L, LUO G X, WANG Z H, et, al Prediction of residual behaviour for post-earthquake damaged reinforced concrete column based on damage distribution model[J]. Engineering Structures, 2021, 234: 111927
doi: 10.1016/j.engstruct.2021.111927
[3]   HWANG H, CHOU T Evaluation of seismic performance of an electric substation using event tree/fault tree technique[J]. Probabilistic Engineering Mechanics, 1998, 13 (2): 117- 124
doi: 10.1016/S0266-8920(97)00018-0
[4]   VOLKANOVSKI A, ČEPIN M, MAVKO B Application of the fault tree analysis for assessment of power system reliability[J]. Reliability Engineering and System Safety, 2009, 94 (6): 1116- 1127
doi: 10.1016/j.ress.2009.01.004
[5]   AL-ZAHRANI M A, SYED J L Evaluation of municipal water distribution system reliability using minimum cut-set method[J]. Journal of King Saud University, 2006, 18 (1): 67- 81
[6]   李吉超. 基于概率的变电站系统抗震性能评估方法研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2018: 92-113.
LI Ji-chao. Study on probability-based seismic performance assessment method for substation systems [D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2018: 92-113.
[7]   PORTER K, KENNEDY R, BACHMAN R Creating fragility functions for performance-based earthquake engineering[J]. Earthquake Spectra, 2007, 23 (2): 471- 489
doi: 10.1193/1.2720892
[8]   符升平, 李胜波, 罗宁, 等 换挡工况下湿式换挡离合器变胞机理[J]. 浙江大学学报:工学版, 2019, 53 (4): 628- 637
FU Sheng-pin, LI Sheng-bo, LUO Ning, et al Metamorphic mechanism of wet shift clutch in gear shifting process[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (4): 628- 637
[9]   LIU X X, ZHENG S S, WU X X, et al Research on a seismic connectivity reliability model of power systems based on the quasi-Monte Carlo method[J]. Reliability Engineering and System Safety, 2021, (215): 107888
[10]   龙立, 贺金川, 郑山锁, 等 供水系统震后水力分析算法并行化研究[J]. 华中科技大学学报: 自然科学版, 2020, 48 (12): 121- 126
LONG Li, HE Jin-chuan, ZHENG Shan-suo, et al Research on parallel algorithm for post-earthquake hydraulic analysis of water supply system[J]. Journal of Huazhong University of science and Technology: Natural Science Edition, 2020, 48 (12): 121- 126
doi: 10.13245/j.hust.201221
[11]   闫旭, 范晓亮, 郑传潘, 等 基于图卷积神经网络的城市交通态势预测算法[J]. 浙江大学学报:工学版, 2020, 54 (6): 1147- 1155
YAN Xu, FAN Xiao-liang, ZHENG Chuan-pan, et al Urban traffic flow prediction algorithm based on graph convolutional neural networks[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (6): 1147- 1155
[12]   郑山锁, 汪靖, 贺金川, 等 变电站主接线系统地震易损性分析[J]. 华中科技大学学报: 自然科学版, 2020, 48 (3): 98- 103
ZHENG Shan-suo, WANG Jing, HE Jin-chuan, et al Seismic vulnerability analysis of substation system[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2020, 48 (3): 98- 103
[13]   GÓMEZ C, SÁNCHEZ S M, DUEÑAS O L An applied complex systems framework for risk-based decision-making in infrastructure engineering[J]. Structure Safety, 2014, 50: 66- 77
doi: 10.1016/j.strusafe.2014.03.011
[14]   HOU T, NUYENS D, ROELS S, et al Quasi-Monte Carlo based uncertainty analysis: sampling efficiency and error estimation in engineering applications[J]. Reliability Engineering and System Safety, 2019, 191: 106541- 9
doi: 10.1016/j.ress.2019.106541
[15]   KUCHERENKO S, SONG S Different numerical estimators for main effect global sensitivity indices[J]. Reliability Engineering and System Safety, 2017, 165: 222- 238
doi: 10.1016/j.ress.2017.04.003
[16]   刘晓航, 贺金川, 郑山锁, 等 基于拟蒙特卡罗法的电力系统抗震可靠性研究[J]. 华中科技大学学报: 自然科学版, 2020, 48 (9): 119- 125
LIU Xiao-hang, HE Jin-chuan, ZHENG Shan-suo, et al Research on seismic reliability of power systems based on quasi-Monte Carlo method[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2020, 48 (9): 119- 125
[17]   MOHAMMED N A Comparing halton and sobol sequences in integral evaluation[J]. Zanco Journal of Pure and Applied Sciences, 2019, 31 (1): 32- 39
[18]   刘振亚. 国家电网公司输变电工程通用设计(110(66)~750 kV变电站分册)[M]. 北京: 中国电力出版社, 2010: 118-128.
[19]   于永清, 李光范, 李鹏, 等 四川电网汶川地震电力设施受灾调研分析[J]. 电网技术, 2008, (11): 5- 10
YU Yong-qing, LI Guang-fan, LI Peng, et al Investigation and analysis of electric equipment damage in Sichuan power grid caused by wenchuang earthquake[J]. Power System Technology, 2008, (11): 5- 10
doi: 10.13335/j.1000-3673.pst.2008.11.021
[20]   程永锋, 朱全军, 卢智成 变电站电力设施抗震措施研究现状与发展趋势[J]. 电网技术, 2008, (22): 84- 89
CHENG Yong-feng, ZHU Quan-jun, LU Zhi-cheng Progress and development trend on seismic measures of electric power equipment in transformer substations[J]. Power System Technology, 2008, (22): 84- 89
[1] Ming-feng HUANG,Xin-rui WEI,He-kai YE,Jian-yun YE,Wen-juan LOU. Wind-induced response of crane structure with double flat arms for long-span transmission towers[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1351-1360.
[2] YU Zhi-wu, PENG Xiao-dan,GUO Wei, PENG Miao-pei. Seismic performance of precast concrete shear wall with U-type reinforcements ferrule connection[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(5): 975-984.