1. Liaoning Engineering Laboratory for Deep-Sea Floating Structures, School of Naval Architecture, Dalian University of Technology, Dalian 116024, China 2. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China 3. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China
The traditional finite element method (FEM) suffers the low accuracy problems for low order elements due to the overly stiffness problem in solid model. Thus, the smoothed point interpolation method (S-PIM) was employed. S-PIM has been proved to be able to soften solid stiffness through the gradient smoothing operation, and improve the accuracy of solving solid problems by using the linear background mesh, easily to be meshed. Different solid solvers can be got by different ways of constructing smoothing domains, improving the computational accuracy differently. In the framework of immersed smoothed point interpolation method (IS-PIM), the semi-implicit characteristic-based split (CBS) procedure was used as fluid solver in fluid-structure interactions (FSI) model, the performance of different solid solvers, including FEM, edge-based smoothed point interpolation method (ES-PIM) and the node-based partly smoothed point interpolation method (NPS-PIM), were compared to each other in terms of accuracy and efficiency. Results show that the NPS-PIM can get more accurate stiffness of solid model, and get better results in computational accuracy and computational efficiency comparing with ES-PIM and FEM.
Shuo HUANG,Shuang-qiang WANG,Peng WANG,Gui-yong ZHANG. Comparative study of application of smoothed point interpolation method in fluid-structure interactions. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1645-1654.
Fig.3Construction of node-based partial smoothing domain
Fig.4Geometry model and meshed model of disk falling
Fig.5Vertical velocity of point A at different times
Fig.6Horizontal velocity distribution of fluid at different times
Fig.7Vertical velocity distribution of fluid at different times
Fig.8Pressure distribution of fluid at different times
Fig.9Computational model of elastic beam in a fluid tunnel
固体网格
尺寸/cm
节点数
单元数
MS1
1/50
123
160
MS2
1/60
196
288
MS3
1/75
244
360
MS4
1/100
405
640
MS5
1/300
3133
5760
Tab.1Mesh setting for solids of elastic beam in a fluid tunnel
流体网格
尺寸/cm
节点数
单元数
MF1
1/50
10251
20000
MF2
1/100
40501
80000
Tab.2Mesh setting for fluids of elastic beam in a fluid tunnel
Fig.10Horizontal displacement curves of top point A in different solid solvers
Fig.11Displacement contours of solids for three different methods
Fig.12Velocity contours and streamline charts obtained by using different solid solvers
求解器
固体网格
MS1
MS2
MS3
MS4
FEM
1.27×10?1
6.85×10?2
6.25×10?2
2.80×10?2
ES-PIM
3.21×10?2
1.02×10?2
1.09×10?2
6.10×10?3
NPS-PIM
7.40×10?3
4.70×10?3
3.10×10?3
2.50×10?3
Tab.3Computational error with fluid mesh MF1
求解器
固体网格
MS1
MS2
MS3
MS4
FEM
5.26×103
5.40×103
5.48×103
5.72×103
ES-PIM
1.33×104
1.34×104
1.35×104
1.38×104
NPS-PIM
7.03×103
7.21×103
7.17×103
7.54×103
Tab.4Computational time with fluid mesh MF1
求解器
固体网格
MS1
MS2
MS3
MS4
FEM
1.000
1.000
1.000
1.000
ES-PIM
1.566
2.695
2.327
1.902
NPS-PIM
12.844
10.909
15.410
8.490
Tab.5Computational efficiency with fluid mesh MF1
求解器
固体网格
MS1
MS2
MS3
MS4
FEM
1 .000
1.000
1.000
1.000
ES-PIM
1.396
0.924
0.942
0.790
NPS-PIM
4.653
9.440
21.913
13.841
Tab.6Computational efficiency with fluid mesh MF2
Fig.13Computational model of a hyper elastic wall problem driven by lid-driven cavity flow
固体网格
尺寸/cm
节点数
单元数
MS1
1/40
1701
3200
MS2
1/50
2652
5050
MS3
1/100
10251
20000
Tab.7Mesh setting for solids of a hyper elastic wall problem
求解器
固体网格
MS1
MS2
FEM
5.06×10?1
5.04×10?1
ES-PIM
1.58×10?1
1.57×10?1
NPS-PIM
9.06×10?3
8.30×10?3
Tab.8Computational error with fluid mesh node number of 16641
求解器
固体网格
MS1
MS2
FEM
9.35×103
1.17×104
ES-PIM
1.79×104
2.30×104
NPS-PIM
1.26×104
1.50×104
Tab.9Computational time with fluid mesh node number of 16641
求解器
固体网格
MS1
MS2
FEM
1.000
1.000
ES-PIM
1.672
1.622
NPS-PIM
39.086
47.235
Tab.10Computational efficiency with fluid mesh node number of 16641
Fig.14Horizontal velocity contours and streamline charts obtained by using NPS-PIM as solid solver
[1]
PESKIN C S Flow patterns around heart valves: a numerical method[J]. Journal of Computational Physics, 1972, 10 (2): 252- 271
doi: 10.1016/0021-9991(72)90065-4
[2]
罗海宁, 黄伟希 移动最小二乘浸没边界法中的权函数影响分析[J]. 计算力学学报, 2017, 34 (4): 487- 492 LUO Hai-ning, HUANG Wei-xi The impact analysis of weight finction in immersed boundary methods by the moving least square[J]. Chinese Journal of Computational Mechanics, 2017, 34 (4): 487- 492
doi: 10.7511/jslx201704014
[3]
何跃龙, 李盾, 刘帅, 等 基于指数插值的浸没边界法在可压缩流模拟中的应用研究[J]. 空气动力学学报, 2016, 34 (4): 426- 432 HE Yue-long, LI Dun, LIU Shuai, et al The application of power-law interpolation based immersed boundary method in compressible flow simulation[J]. Acta Aerodynamica Sinica, 2016, 34 (4): 426- 432
doi: 10.7638/kqdlxxb-2014.0107
[4]
GLOWINSKI R, PANT W, HESLA T I, et al A distributed Lagrange multiplier/fictitious domain method for flows around moving rigid bodies: application to particulate flow[J]. International Journal for Numerical Methods in Fluids, 1999, 30 (8): 1043- 1066
doi: 10.1002/(SICI)1097-0363(19990830)30:8<1043::AID-FLD879>3.0.CO;2-Y
[5]
WANG T, PANT W, GLOWINSKI R, et al A fictitious domain method for simulating viscous flow in a constricted elastic tube subject to a uniform external pressure[J]. International Journal for Numerical Methods in Biomedical Engineering, 2010, 26 (3/4): 290- 304
[6]
陈凯, 余钊圣, 邵雪明 多孔介质方腔自然对流的直接数值模拟[J]. 浙江大学学报: 工学版, 2012, 46 (3): 549- 554 CHEN Kai, YU Zhao-sheng, SHAO Xue-ming Direct simulation of natural convection in square cavity filled with porus media[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (3): 549- 554
[7]
林昭武. 基于并行虚拟区域方法的颗粒悬浮流直接数值模拟研究[D]. 杭州: 浙江大学, 2016. LIN Zhao-wu. Direct numercial simulation of particulate flows with the parallel fictitious domain method [D]. Hagnzhou: Zhejiang University, 2016.
[8]
ZHANG L T, GERSTENBERGER A, WANG X, et al Immersed finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193 (21/22): 2051- 2067
[9]
LIU W K, KIM D W, TANG S Mathematical foundations of the immersed finite element method[J]. Computational Mechanics, 2007, 39 (3): 211- 222
[10]
吴家阳, 熊智勇, 杨峰, 等 浸没边界-格子玻尔兹曼方法的GPU并行加速[J]. 中国科技论文, 2018, 13 (5): 517- 521 WU Jia-yang, XIONG Zhi-yong, YANG Feng, et al GPU accelerated immersed boundary-lattice Boltzmann coupling method[J]. China Sciencepaper, 2018, 13 (5): 517- 521
doi: 10.3969/j.issn.2095-2783.2018.05.006
[11]
刘克同, 汤爱平, 刘玥君, 等 基于浸没边界和格子玻尔兹曼的流固耦合算法[J]. 华中科技大学学报: 自然科学版, 2015, 43 (1): 61- 66 LIU Ke-tong, TANG Ai-ping, LIU Yue-jun, et al Fluid-structure interaction method using immersed boundary and lattice Boltzmann method[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2015, 43 (1): 61- 66
[12]
GILMANOV A, SOTIROPOULOS F A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies[J]. Journal of Computational Physics, 2005, 207 (2): 457- 492
doi: 10.1016/j.jcp.2005.01.020
[13]
ZHANG G Y, LU H, YU D P, et al A node-based partly smoothed point interpolation method (NPS-PIM) for dynamic analysis of solids[J]. Engineering Analysis with Boundary Elements, 2018, 87: 165- 172
doi: 10.1016/j.enganabound.2017.12.002
[14]
HOU G, WANG J, LAYTON A Numerical methods for fluid-structure interaction: a review[J]. Communications in Computational Physics, 2012, 12 (2): 337- 377
doi: 10.4208/cicp.291210.290411s
[15]
ZHANG Z Q, LIU G R, KHOO B C Immersed smoothed finite element method for two dimensional fluid-structure interaction problems[J]. International Journal for Numerical Methods in Engineering, 2012, 90 (10): 1292- 1320
doi: 10.1002/nme.4299
[16]
JIANG C, YAO J Y, ZHANG Z Q, et al A sharp-interface immersed smoothed finite element method for interactions between incompressible flows and large deformation solids[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 340 (1): 24- 53
[17]
WANG S Q, ZHANG G Y, ZHANG Z Q, et al An immersed smoothed point interpolation method (IS-PIM) for fluid-structure interaction problems[J]. International Journal for Numerical Methods in Fluids, 2017, 85 (4): 213- 234
doi: 10.1002/fld.4379
[18]
WANG S Q, CAI Y N, ZHANG G Y, et al A coupled immersed boundary-lattice Boltzmann method with smoothed point interpolation method for fluid-structure interaction problems[J]. International Journal for Numerical Methods in Fluids, 2018, 88 (8): 363- 384
doi: 10.1002/fld.4669
[19]
ZHANG G Y, WANG S Q, LU H, et al Coupling immersed method with node-based partly smoothed point interpolation method (NPS-PIM) for large-displacement fluid-structure interaction problems[J]. Ocean Engineering, 2018, 157: 80- 201
[20]
LIU G R, ZHANG G Y. Smoothed point interpolation methods: G space and weakened weak forms [M]. Singapore: World Scientific Press, 2013.
[21]
LIU G R, ZHANG G Y Edge-based smoothed point interpolation methods[J]. International Journal of Computational Methods, 2008, 5 (4): 621- 646
doi: 10.1142/S0219876208001662
[22]
ZHANG G Y, LIU G R, WANG Y Y, et al A linearly conforming point interpolation method (LC-PIM) for three-dimensional elasticity problems[J]. International Journal for Numerical Methods in Engineering, 2010, 72 (13): 1524- 1543
[23]
LIU G R, ZHANG G Y Upper bound solution to elasticity problems: a unique property of the linearly conforming point interpolation method (LC-PIM)[J]. International Journal for Numerical Methods in Engineering, 2008, 74 (7): 1128- 1161
doi: 10.1002/nme.2204
[24]
鲁欢, 于大鹏, 张桂勇, 等 应用点基局部光滑点插值法的固有频率上下界计算[J]. 西安交通大学学报, 2017, 51 (5): 165- 172 LU Huan, YU Da-peng, ZHANG Gui-yong, et al Node-locally-based smoothed point interpolation method for calculating upper/lower bounds of natural frequency[J]. Journal of Xi’an Jiaotong University, 2017, 51 (5): 165- 172
[25]
张桂勇, 鲁欢, 王海英, 等 基于点基局部光滑点插值法的结构动力分析[J]. 振动与冲击, 2018, 37 (17): 241- 248 ZHANG Gui-yong, LU Huan, WANG Hai-ying, et al Structual dynamics analysis using NPSPIM[J]. Journal of Vibration and Shock, 2018, 37 (17): 241- 248
[26]
ZIENKIEWICZ O C, NITHIARASU P, CODINA R, et al The characteristic-based-split procedure: an efficient and accurate algorithm for fluid problems[J]. International Journal for Numerical Methods in Fluids, 1999, 31 (1): 359- 392
doi: 10.1002/(SICI)1097-0363(19990915)31:1<359::AID-FLD984>3.0.CO;2-7
[27]
ZIENKIEWICZ O C, TAYLOR R L. The finite element method, 5th edition [M]. Oxford: Butterworth Heinemann, 2000.
[28]
BELYTSCHKO T, LIU W K, MORAN B, et al. Nonlinear finite elements for continua and structures [M]. New York: John Wiley, 2000.
[29]
CLIFT R. Bubbles, drops, and particles [M]. New York: Academic Press, 1978.
LI Ming, LIU Yang, TANG Xue-song. Trans-scale analysis for fatigue crack[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 524-531.