|
|
Comparative study of application of smoothed point interpolation method in fluid-structure interactions |
Shuo HUANG1(),Shuang-qiang WANG1,Peng WANG1,Gui-yong ZHANG1,2,3,*() |
1. Liaoning Engineering Laboratory for Deep-Sea Floating Structures, School of Naval Architecture, Dalian University of Technology, Dalian 116024, China 2. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China 3. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China |
|
|
Abstract The traditional finite element method (FEM) suffers the low accuracy problems for low order elements due to the overly stiffness problem in solid model. Thus, the smoothed point interpolation method (S-PIM) was employed. S-PIM has been proved to be able to soften solid stiffness through the gradient smoothing operation, and improve the accuracy of solving solid problems by using the linear background mesh, easily to be meshed. Different solid solvers can be got by different ways of constructing smoothing domains, improving the computational accuracy differently. In the framework of immersed smoothed point interpolation method (IS-PIM), the semi-implicit characteristic-based split (CBS) procedure was used as fluid solver in fluid-structure interactions (FSI) model, the performance of different solid solvers, including FEM, edge-based smoothed point interpolation method (ES-PIM) and the node-based partly smoothed point interpolation method (NPS-PIM), were compared to each other in terms of accuracy and efficiency. Results show that the NPS-PIM can get more accurate stiffness of solid model, and get better results in computational accuracy and computational efficiency comparing with ES-PIM and FEM.
|
Received: 28 April 2019
Published: 28 August 2020
|
|
Corresponding Authors:
Gui-yong ZHANG
E-mail: uheverlast@mail.dlut.edu.cn;gyzhang@dlut.edu.cn
|
光滑点插值法应用于流固耦合的比较研究
针对传统有限元法(FEM)固体模型刚度过硬导致低阶单元求解精度较低的问题,采用光滑点插值方法(S-PIM). S-PIM得益于梯度光滑技术能软化固体模型刚度,基于容易剖分的线性背景网格能改善固体求解精度. 采用不同的光滑域构建方式可以得到不同的固体求解器,从而在不同程度上提高计算精度. 本研究以浸没光滑点插值法(IS-PIM)为基础,在流固耦合(FSI)模型中采用较成熟的半隐式特征分离法(CBS)作为流体求解器,分别采用有限元法、边基光滑点插值方法(ES-PIM)以及点基局部光滑点插值方法(NPS-PIM)作为固体求解器,比较不同固体求解器条件下的计算精度和效率. 结果表明,与边基光滑点插值方法和有限元法相比,在流固耦合模型中采用点基局部光滑点插值法可以得到更准确的固体模型刚度,也更有利于计算精度和计算效率的提高.
关键词:
浸没方法,
流固耦合,
有限元法,
光滑点插值方法,
计算效率
|
|
[1] |
PESKIN C S Flow patterns around heart valves: a numerical method[J]. Journal of Computational Physics, 1972, 10 (2): 252- 271
doi: 10.1016/0021-9991(72)90065-4
|
|
|
[2] |
罗海宁, 黄伟希 移动最小二乘浸没边界法中的权函数影响分析[J]. 计算力学学报, 2017, 34 (4): 487- 492 LUO Hai-ning, HUANG Wei-xi The impact analysis of weight finction in immersed boundary methods by the moving least square[J]. Chinese Journal of Computational Mechanics, 2017, 34 (4): 487- 492
doi: 10.7511/jslx201704014
|
|
|
[3] |
何跃龙, 李盾, 刘帅, 等 基于指数插值的浸没边界法在可压缩流模拟中的应用研究[J]. 空气动力学学报, 2016, 34 (4): 426- 432 HE Yue-long, LI Dun, LIU Shuai, et al The application of power-law interpolation based immersed boundary method in compressible flow simulation[J]. Acta Aerodynamica Sinica, 2016, 34 (4): 426- 432
doi: 10.7638/kqdlxxb-2014.0107
|
|
|
[4] |
GLOWINSKI R, PANT W, HESLA T I, et al A distributed Lagrange multiplier/fictitious domain method for flows around moving rigid bodies: application to particulate flow[J]. International Journal for Numerical Methods in Fluids, 1999, 30 (8): 1043- 1066
doi: 10.1002/(SICI)1097-0363(19990830)30:8<1043::AID-FLD879>3.0.CO;2-Y
|
|
|
[5] |
WANG T, PANT W, GLOWINSKI R, et al A fictitious domain method for simulating viscous flow in a constricted elastic tube subject to a uniform external pressure[J]. International Journal for Numerical Methods in Biomedical Engineering, 2010, 26 (3/4): 290- 304
|
|
|
[6] |
陈凯, 余钊圣, 邵雪明 多孔介质方腔自然对流的直接数值模拟[J]. 浙江大学学报: 工学版, 2012, 46 (3): 549- 554 CHEN Kai, YU Zhao-sheng, SHAO Xue-ming Direct simulation of natural convection in square cavity filled with porus media[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (3): 549- 554
|
|
|
[7] |
林昭武. 基于并行虚拟区域方法的颗粒悬浮流直接数值模拟研究[D]. 杭州: 浙江大学, 2016. LIN Zhao-wu. Direct numercial simulation of particulate flows with the parallel fictitious domain method [D]. Hagnzhou: Zhejiang University, 2016.
|
|
|
[8] |
ZHANG L T, GERSTENBERGER A, WANG X, et al Immersed finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193 (21/22): 2051- 2067
|
|
|
[9] |
LIU W K, KIM D W, TANG S Mathematical foundations of the immersed finite element method[J]. Computational Mechanics, 2007, 39 (3): 211- 222
|
|
|
[10] |
吴家阳, 熊智勇, 杨峰, 等 浸没边界-格子玻尔兹曼方法的GPU并行加速[J]. 中国科技论文, 2018, 13 (5): 517- 521 WU Jia-yang, XIONG Zhi-yong, YANG Feng, et al GPU accelerated immersed boundary-lattice Boltzmann coupling method[J]. China Sciencepaper, 2018, 13 (5): 517- 521
doi: 10.3969/j.issn.2095-2783.2018.05.006
|
|
|
[11] |
刘克同, 汤爱平, 刘玥君, 等 基于浸没边界和格子玻尔兹曼的流固耦合算法[J]. 华中科技大学学报: 自然科学版, 2015, 43 (1): 61- 66 LIU Ke-tong, TANG Ai-ping, LIU Yue-jun, et al Fluid-structure interaction method using immersed boundary and lattice Boltzmann method[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2015, 43 (1): 61- 66
|
|
|
[12] |
GILMANOV A, SOTIROPOULOS F A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies[J]. Journal of Computational Physics, 2005, 207 (2): 457- 492
doi: 10.1016/j.jcp.2005.01.020
|
|
|
[13] |
ZHANG G Y, LU H, YU D P, et al A node-based partly smoothed point interpolation method (NPS-PIM) for dynamic analysis of solids[J]. Engineering Analysis with Boundary Elements, 2018, 87: 165- 172
doi: 10.1016/j.enganabound.2017.12.002
|
|
|
[14] |
HOU G, WANG J, LAYTON A Numerical methods for fluid-structure interaction: a review[J]. Communications in Computational Physics, 2012, 12 (2): 337- 377
doi: 10.4208/cicp.291210.290411s
|
|
|
[15] |
ZHANG Z Q, LIU G R, KHOO B C Immersed smoothed finite element method for two dimensional fluid-structure interaction problems[J]. International Journal for Numerical Methods in Engineering, 2012, 90 (10): 1292- 1320
doi: 10.1002/nme.4299
|
|
|
[16] |
JIANG C, YAO J Y, ZHANG Z Q, et al A sharp-interface immersed smoothed finite element method for interactions between incompressible flows and large deformation solids[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 340 (1): 24- 53
|
|
|
[17] |
WANG S Q, ZHANG G Y, ZHANG Z Q, et al An immersed smoothed point interpolation method (IS-PIM) for fluid-structure interaction problems[J]. International Journal for Numerical Methods in Fluids, 2017, 85 (4): 213- 234
doi: 10.1002/fld.4379
|
|
|
[18] |
WANG S Q, CAI Y N, ZHANG G Y, et al A coupled immersed boundary-lattice Boltzmann method with smoothed point interpolation method for fluid-structure interaction problems[J]. International Journal for Numerical Methods in Fluids, 2018, 88 (8): 363- 384
doi: 10.1002/fld.4669
|
|
|
[19] |
ZHANG G Y, WANG S Q, LU H, et al Coupling immersed method with node-based partly smoothed point interpolation method (NPS-PIM) for large-displacement fluid-structure interaction problems[J]. Ocean Engineering, 2018, 157: 80- 201
|
|
|
[20] |
LIU G R, ZHANG G Y. Smoothed point interpolation methods: G space and weakened weak forms [M]. Singapore: World Scientific Press, 2013.
|
|
|
[21] |
LIU G R, ZHANG G Y Edge-based smoothed point interpolation methods[J]. International Journal of Computational Methods, 2008, 5 (4): 621- 646
doi: 10.1142/S0219876208001662
|
|
|
[22] |
ZHANG G Y, LIU G R, WANG Y Y, et al A linearly conforming point interpolation method (LC-PIM) for three-dimensional elasticity problems[J]. International Journal for Numerical Methods in Engineering, 2010, 72 (13): 1524- 1543
|
|
|
[23] |
LIU G R, ZHANG G Y Upper bound solution to elasticity problems: a unique property of the linearly conforming point interpolation method (LC-PIM)[J]. International Journal for Numerical Methods in Engineering, 2008, 74 (7): 1128- 1161
doi: 10.1002/nme.2204
|
|
|
[24] |
鲁欢, 于大鹏, 张桂勇, 等 应用点基局部光滑点插值法的固有频率上下界计算[J]. 西安交通大学学报, 2017, 51 (5): 165- 172 LU Huan, YU Da-peng, ZHANG Gui-yong, et al Node-locally-based smoothed point interpolation method for calculating upper/lower bounds of natural frequency[J]. Journal of Xi’an Jiaotong University, 2017, 51 (5): 165- 172
|
|
|
[25] |
张桂勇, 鲁欢, 王海英, 等 基于点基局部光滑点插值法的结构动力分析[J]. 振动与冲击, 2018, 37 (17): 241- 248 ZHANG Gui-yong, LU Huan, WANG Hai-ying, et al Structual dynamics analysis using NPSPIM[J]. Journal of Vibration and Shock, 2018, 37 (17): 241- 248
|
|
|
[26] |
ZIENKIEWICZ O C, NITHIARASU P, CODINA R, et al The characteristic-based-split procedure: an efficient and accurate algorithm for fluid problems[J]. International Journal for Numerical Methods in Fluids, 1999, 31 (1): 359- 392
doi: 10.1002/(SICI)1097-0363(19990915)31:1<359::AID-FLD984>3.0.CO;2-7
|
|
|
[27] |
ZIENKIEWICZ O C, TAYLOR R L. The finite element method, 5th edition [M]. Oxford: Butterworth Heinemann, 2000.
|
|
|
[28] |
BELYTSCHKO T, LIU W K, MORAN B, et al. Nonlinear finite elements for continua and structures [M]. New York: John Wiley, 2000.
|
|
|
[29] |
CLIFT R. Bubbles, drops, and particles [M]. New York: Academic Press, 1978.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|