Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (1): 33-39    DOI: 10.3785/j.issn.1008-973X.2020.01.004
Mechanical Engineering     
Lightweight design of forklift frame based on guide weight method
Shui-guang TONG1(),Shun HE1,Zhe-ming TONG1,*(),Yuan-song LI2,Zheng-yu XU2,Xiao-hui FANG2,Da-hui TAN3,Yu-wei ZHONG3
1. College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
2. Hang Fork Group Limited Company, Hangzhou 311305, China
3. Guangxi Yuchai Machinery Limited Company, Yulin 537005, China
Download: HTML     PDF(881KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The integrated optimization method combining the guide weight method and the sensitivity calculation was used to lightweight design the gantry structure of a certain type of internal combustion forklift aiming at the large margin of large-scale mechanical design. The multi-state constraints such as strength and stiffness were derived. The single-objective and multi-sex constraint optimization model of the guide weight method was established. The Kuhn-Tucker multiplier was solved by Lamker algorithm. The semi-analytic method with classical error correction term (ESA) was used to calculate sensitivity, and the unit error correction term was introduced to eliminate the error caused by the rotational displacement of the rigid body. The problem that the bulk density and the guided weight are difficult to solve was solved combined with the guide weight method. The finite element method was used to check the strength and stiffness of the optimized gantry structure. Results show that the integrated optimization method combined with the guide weight method and the sensitivity calculation has a significant effect, which makes the quality of the forklift gantry reduced by 18.21%. The optimized gantry strength and stiffness meet the design requirements.



Key wordsguide weight method      semi-analytic method (ESA)      multi-state constraint      lightweight design      finite element method     
Received: 29 November 2018      Published: 05 January 2020
CLC:  TH 242  
Corresponding Authors: Zhe-ming TONG     E-mail: cetongsg@zju.edu.cn;tzm@zju.edu.cn
Cite this article:

Shui-guang TONG,Shun HE,Zhe-ming TONG,Yuan-song LI,Zheng-yu XU,Xiao-hui FANG,Da-hui TAN,Yu-wei ZHONG. Lightweight design of forklift frame based on guide weight method. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 33-39.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.01.004     OR     http://www.zjujournals.com/eng/Y2020/V54/I1/33


基于导重法的叉车门架轻量化设计

针对大型复杂机械设计余量过大的现象,采用导重法和灵敏度计算相结合的集成优化法对某型号内燃叉车的门架结构进行全局轻量化设计. 推导强度、刚度等多性态约束条件,搭建导重法单目标、多性态约束优化模型,利用Lamker算法求解Kuhn-Tucker乘子;灵敏度计算采用带有经典误差修正项的半解析法(ESA),引入单元误差修正项,消除刚体转动位移带来的误差;结合导重法,解决了容重和导重难以求解的问题. 利用有限元法,对优化后的门架结构进行强度和刚度校核. 结果表明,采用导重法和灵敏度计算相结合的集成优化法效果显著,使得叉车门架质量降低18.21%,优化后的门架强度和刚度满足设计要求.


关键词: 导重法,  半解析法(ESA),  多性态约束,  轻量化设计,  有限元法 
Fig.1 Structural drawing of forklift door frame
Fig.2 Portal frame column structure and combination mode
材料 E/MPa ρ/(kg·m?3 σs/MPa
Q345 2.06×105 7 850 ≥345
Tab.1 Material property table of Q345
Fig.3 Force diagram of portal frame column
Fig.4 Displacement diagram of portal frame
Fig.5 Section diagram of portal frame column
设计变量 x1 x2 x3 x4
优化前 24 12 171 27
优化后 18 12 156 18
Tab.2 Design variable size before and after optimization mm
结构 m0/kg m1/kg p/%
单个货叉 66 59.27 10.20
货叉架 124.68 88.02 29.40
内门架 156.34 128.73 17.66
外门架 224.27 185.96 17.08
门架整体 637.29 521.25 18.21
Tab.3 Quality comparison of portal frame structures before and after optimization
Fig.6 Finite element analysis of portal frame
[1]   钟群鹏, 有移亮, 张峥, 等 机械装备构件轻量化主要技术途径的探讨[J]. 机械工程学报, 2012, 48 (18): 2- 6
ZHONG Qun-peng, YOU Yi-liang, ZHANG Zheng, et al On the main technical ways to lightweight mechanical equipment components[J]. Journal of Mechanical Engineering, 2012, 48 (18): 2- 6
[2]   LEMERLE P, HOPPNER O, REBELLE J Dynamic stability of forklift trucks in cornering situations: parametrical analysis using a driving simulator[J]. Vehicle System Dynamics, 2011, 49 (10): 1673- 1693
doi: 10.1080/00423114.2010.532557
[3]   童水光, 何顺, 童哲铭, 等.基于组合近似模型的轻量化设计方法[EB/OL]. [2019-10-21]. http://kns.cnki.net/kcms/detail/42.1294.TH.20190809.1104.002.html.
TONG Shui-guang, HE Shun, TONG Zhe-ming, et al. Lightweight design method based on combined approximation model [EB/OL]. [2019-10-21]. http://kns.cnki.net/kcms/detail/42.1294.TH.20190809.1104.002.html.
[4]   童水光, 何顺, 童哲铭, 等 叉车门架动静态联合仿真及多目标优化[J]. 机械设计, 2018, 35 (12): 7- 11
TONG Shui-guang, HE Shun, TONG Zhe-ming, et al Dynamic and co-simulation of forklift frame and multi-objective optimization[J]. Journal of Machine Design, 2018, 35 (12): 7- 11
[5]   陈树勋, 韦齐峰, 黄锦成, 等 利用导重法进行结构轻量化设计[J]. 工程力学, 2016, 33 (02): 179- 187
CHEN Shu-xun, WEI Qi-feng, HUANG Jin-cheng, et al Lightening structural design using guide weight method[J]. Engineering Mechanics, 2016, 33 (02): 179- 187
[6]   李枝东, 刘辛军 导重法求解单工况的拓扑优化问题[J]. 机械工程学报, 2011, 47 (15): 107- 114
LI Zhi-dong, LIU Xin-jun Guide-weight method on solving topology optimization problems under single load case[J]. Journal of Mechanical Engineering, 2011, 47 (15): 107- 114
[7]   刘辛军, 李枝东, 陈祥 多工况拓扑优化问题的一种新解法——导重法[J]. 中国科学: 技术科学, 2011, 41 (07): 920- 928
LIU Xin-jun, LI Zhi-dong, CHEN Xiang A new solution for topology optimization problems with multiple loads: the guide-weight method[J]. Science China: Technological Sciences, 2011, 41 (07): 920- 928
[8]   陈垂福, 杨晓翔 基于步长因子改进的导重法求解拓扑优化问题[J]. 计算力学学报, 2018, 5 (01): 14- 20
CHEN Chui-fu, YANG Xiao-xiang Based step factor improved guide-weight method for solving topology optimization problems[J]. Chinese Journal of Computational Mechanics, 2018, 5 (01): 14- 20
[9]   张昆鹏, 吴晓明 基于Epsilon算法加速的导重法拓扑优化求解研究[J]. 机电工程, 2016, 33 (05): 521- 526
ZHANG Kun-peng, WU Xiao-ming Convergence acceleration of guide-weight method on solving topology optimization models using Epsilon-algorithm[J]. Journal of Mechanical and Electrical Engineering, 2016, 33 (05): 521- 526
[10]   陈树勋, 李威龙 一种实用的机械结构优化设计方法[J]. 机械设计, 2003, (01): 41- 43
CHEN Shu-xun, LI Wei-long A practical mechanical structure optimization design method[J]. Journal of Machine Design, 2003, (01): 41- 43
doi: 10.3969/j.issn.1001-2354.2003.01.013
[11]   OLHOFF N Shape design sensitivity analysis of eigenvalues using " exact” numerical differentiation of finite element matrices[J]. Structural Optimization, 1994, 8 (1): 52- 59
doi: 10.1007/BF01742934
[12]   WANG W, CLAUSEN P M, BLETZINGER K U Improved semi-analytical sensitivity analysis using a secant stiffness matrix for geometric nonlinear shape optimization[J]. Computers and Structures, 2015, 146: 143- 151
doi: 10.1016/j.compstruc.2014.08.008
[13]   黄帅. 基于联合仿真的平衡重式叉车横向稳定性控制研究[D]. 合肥: 合肥工业大学, 2017.
HUANG Shuai. Research of lateral stability control of counterbalanced forklift truck based on co-simulation [D]. Hefei: Hefei University of Technology, 2017.
[14]   黄亮, 马捷, 邓煜涵, 等 一种超静定变截面梁的力法计算技巧[J]. 力学与实践, 2016, 38 (04): 459- 461
HUANG Liang, MA Jie, DENG Yu-han, et al Calculation based on the force method for statically indeterminate beams with variable sections[J]. Mechanics in Engineering, 2016, 38 (04): 459- 461
[15]   周奇才, 吴青龙, 熊肖磊, 等 桁架结构拓扑及截面尺寸优化设计方法[J]. 西安交通大学学报, 2016, 50 (09): 1- 9
ZHOU Qi-cai, WU Qing-long, XIONG Xiao-lei, et al Optimal design of topology and section size of truss structures[J]. Journal of Xi’an Jiaotong University, 2016, 50 (09): 1- 9
[16]   陈树勋. 精密复杂结构的几种现代设计方法[M]. 北京: 北京航空航天大学出版社, 1992.
[17]   TAKEZAWA A, KITAMURA M Sensitivity analysis and optimization of vibration modes in continuum systems[J]. Journal of Sound and Vibration, 2013, 332 (6): 1553- 1566
doi: 10.1016/j.jsv.2012.11.015
[18]   HANSEN J S, LIU Z S, OLHOFF N Shape sensitivity analysis using a fixed basis function finite element approach[J]. Structural and Multidisciplinary Optimization, 2001, 21 (3): 177- 195
doi: 10.1007/s001580050183
[19]   VAN KEULEN F, DE BOER H Rigorous improvement of semi-analytical design sensitivities by exact differentiation of rigid body motions[J]. International Journal for Numerical Methods in Engineering, 2015, 42 (1): 71- 91
[20]   BOER H D, KEULEN F V Error analysis of refined semianalytical design sensitivities[J]. Structural Optimization, 1997, 14 (4): 242- 247
doi: 10.1007/BF01197946
[21]   BOER H D, KEULEN F V Refined semi-analytical design sensitivities[J]. International Journal of Solids and Structures, 2000, 37 (46): 6961- 6980
[22]   BLETZINGER K U, FIRL M, DAOUD F Approximation of derivatives in semi-analytical structural optimization[J]. Computers and Structures, 2008, 86 (13): 1404- 1416
[23]   VOORHEES A, MILLWATER H, BAGLEY R Complex variable methods for shape sensitivity of finite element models[J]. Finite Elements in Analysis and Design, 2011, 47 (10): 1146- 1156
doi: 10.1016/j.finel.2011.05.003
[24]   张力丹, 张盛, 陈飙松, 等 结构优化半解析灵敏度及误差修正改进算法[J]. 力学学报, 2018, 50 (04): 949- 960
ZHANG Li-dan, ZHANG Sheng, CHEN Biao-song, et al Modified semi-analytical sensitivity analysis and its error correction techniques[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50 (04): 949- 960
[25]   郭磊, 曹炳鑫 基于ANSYS的叉车门架滚轮修形参数优化[J]. 科技创新与应用, 2017, (07): 50- 51
GUO Lei, CAO Bing-xin Optimization of the modification parameters of the forklift frame roller based on ANSYS[J]. Technology Innovation and Application, 2017, (07): 50- 51
[1] Jing-jing LIU,Tie-lin CHEN,Mao-hong YAO,Yu-xin WEI,Zi-jian ZHOU. Experimental and numerical study on slurry fracturing of shield tunnels in sandy stratum[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1715-1726.
[2] Shuo HUANG,Shuang-qiang WANG,Peng WANG,Gui-yong ZHANG. Comparative study of application of smoothed point interpolation method in fluid-structure interactions[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1645-1654.
[3] Chi QIU,Jian-kun HUANG,Yu-cun HU,Xiao-ping GUO,Yun-qing HU. Influence of irrigation on slope stability of dump in arid desert area of Northwest China: a case study of Xinxing coal mine, Wuhai[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1467-1477.
[4] Wen-han CAO,Jun GONG,Hong-gang WANG,Gui GAO,Yuan QI,Dong-ya YANG. Numerical simulation on wear-thermal-stress coupling behavior of cap-seal seal and optimization design[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 258-267.
[5] Qi-xiang LIAN,Zhi-ye DU,Shuo JIN,Zhi-fei YANG,Guo-dong HUANG,Jiang-jun RUAN. Study of transient electric field of oil-paper insulation with transient upstream finite element method[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 399-406.
[6] Wen-qiang DAI,Xu ZHENG,Zhi-yong HAO,Yi QIU. Prediction of high-speed train interior noise using energy finite element analysis[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2396-2403.
[7] Xing-bo HAN,Yong-xu XIA,Yong-dong WANG,Fei YE. Probabilistic degradation model for tunnel lining flexural capacity[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2175-2184.
[8] XIE Ying, HEI Liang-sheng, HUA Bang-jie, ZHANG Xiao-ming. Design and research of permanent magnet vernier motor for electric vehicle[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 184-191.
[9] YU Yang-tian, ZHANG Qing, GU Xin. Hybrid model of peridynamics and finite element method under implicit schemes[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1324-1330.
[10] LI Ming, LIU Yang, TANG Xue-song. Trans-scale analysis for fatigue crack[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 524-531.
[11] HE Ben, WANG Huan, HONG Yi, WANG Li zhong, ZHAO Chang jun, QIN Xiao. Effect of vertical load on lateral behavior of single pile in clay[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1221-1229.
[12] NING Yin hang, LIU Chuang, GAN Xing ye. Electromagnetic design and analysis of two stage hybrid excitation synchronous generator[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 519-526.
[13] HE Guang hui, WANG De jiang, YANG Xiao. Static bending of higher order composite beams considering interfacial incompressibility:displacement and hybrid based finite element analysis[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1716-1724.
[14] OUYANG Xiao ping, XUE Zhi quan, PENG Chao, ZHOU Qing he, YANG Hua yong. Performance analysis on VL seal in aircraft cylinder[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1755-1761.
[15] LING Dao sheng, SHI Ji sen, ZHANG Ru ru, WANG Yun gang. Discontinuous patch tests in Hansbo and Hansbo’s type of methods[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2142-2150.