Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2017, Vol. 51 Issue (11): 2182-2188    DOI: 10.3785/j.issn.1008-973X.2017.11.012
Civil and Traffic Engineering     
Experimental study on unsaturated permeability characteristics of solidified sediment stabilized with cement
ZOU Wei-lie1,2, HE Yang1, ZHANG Feng-De3, WANG Dong-xing1, WANG Shuai4, WANG Yuan-ming3
1. School of Civil Engineering, Wuhan University, Wuhan 430072, China;
2. School of Civil Engineering, Xijing University, Xi'an 710123, China;
3. Sanjiang Engineering Construction Administration Bureau of Heilongjiang, Harbin 150006, China;
4. Anhui Construction Engineering Group Oversea Limited Company, Hefei 230000, China
Download:   PDF(3947KB) HTML
Export: BibTeX | EndNote (RIS)      


The unsaturated permeability properties of subgrade soils have an important influence n the strength and deformation behavior of subgrade soils. Based on the variable head method, The influences of compaction degree, cement amount and curing time on the unsaturated permeability coefficient of solidified sediment modified with cement. By using the transient release and imbibition method(TRIM)system manufactured in USA, the unsaturated permeability tests under drying and wetting paths were conducted in order to obtain the hydraulic parameters, which are usually difficult to measure., with analyzed the influences of compaction, cement amount and curing time for unsaturated permeability coefficient of modified soil. Based on the existing unsaturated permeability coefficient model, A novel unsaturated permeability coefficient prediction model was proposed by the influences of cement amount, compaction degree and saturation degree. The validation of the proposed model was confirmed. Results show that the permeability of the solidified soil is poor, and it is inversely proportional to the curing age, cement content and degree of compaction. In the drying and wetting stage, the curing age has slight influence on the unsaturated permeability coefficient of modified silt soil, and the unsaturated permeability coefficient decreases as the degree of compaction increases.

Received: 20 November 2016      Published: 13 November 2017
CLC:  TU443  
Cite this article:

ZOU Wei-lie, HE Yang, ZHANG Feng-De, WANG Dong-xing, WANG Shuai, WANG Yuan-ming. Experimental study on unsaturated permeability characteristics of solidified sediment stabilized with cement. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(11): 2182-2188.

URL:     OR



[1] 杨永荻,汤怡新.疏浚土的固化处理技术[J].水运工程,2001(4):12-15. YANG Yong-di, TANG Xin-yi. Draged soil solidification treatment technique[J]. Port & Waterway Engineering, 2001(4):12-15.
[2] RICHARDS L A. Capillary conduction of liquids through porous mediums[J]. Journal of Applied Physics, 1931, 1(5):318-333.
[3] DAVIDSON J M, STONE L R, NIELSEN D R, et al.Field measurement and use of soil-water properties[J]. Water Resources Research, 1969, 5(6):1312-1321.
[4] FREDLUND M D, FREDLUND D G, WILSON G W. Prediction of the soil-water characteristic curve from grain-size distribution and volume-mass properties[J]. Proceedings of The^ Symposium on Unsaturated Soil Rio De Janeiro, 1997:13-23.
[5] 黄英豪,朱伟,周宣兆,等.固化淤泥压缩特性的试验研究[J].岩土力学,2012,33(10):2923-2928. HUANG Ying-hao, ZHU Wei, ZHOU Xuan-zhao, et al. Experimental study of compressibility behavior of solidified dredged material[J]. Rock and Soil Mechanics, 2012, 33(10):2923-2928.
[6] 王东星,徐卫亚.固化淤泥长期强度和变形特性试验研究[J].中南大学学报:自然科学版,2013,44(1):332-339. WANG Donf-xing,XU Wei-ya. Experimental study on long-term strength and deformation properties of solidified sediments[J]. Journal of Central South University Science and Technology, 2013, 44(1):332-339.
[7] 张亚灿,赵仲辉,胡孝彭,等. 固化淤泥渗透性的微观分析[J]. 科学技术与工程, 2015, 15(7):243-247. HANG Ya-can, ZHAO Zhong-hui, HU Xiao-peng, et al. Microscopic analysis of permeability of sludge[J]. Science Technology and Engineering, 2015, 15(7):243-247.
[8] HORPIBULSUK S, MIURA N, NAGARAJ T S. Assessment of strength development in cement-admixed high water content clays with Abrams' law as a basis[J]. Géotechnique, 2003, 53(4):439-444.
[9] 刘建军,王全九,雪静,等.利用Hydrus-1D反推土壤水力参数方法分析[J\]世界科技研究与发展,2010:32(2):173-175. LIU Jian-jun, WANG Quan-jiu, XUE Jing. Inverse solution soil hydraulic and verification using hydrus-1D model[J] World Sci-Tech R & D, 2010:32(2):173-175.
[10] 张俊峰,戴小松,邹维列,等.水泥改性固化脱水淤泥路用性能试验[J].浙江大学学报:工学版,2015,49(11):2165-2171. ZHANG Jun-feng, DAI Xiao-song, ZOU Wei-lie, et al. Experiments on pavement performance of solidified sediment modified with cement[J]. Journal of Zhejiang University:Engineering Science, 2015, 49(11):2165-2171.
[12] LOBBEZOO J P, VANAPALLI S K. A simple technique for estimating the coefficient of permeability of unsaturated soils.[C]//55th Canadian Geotechnical Conference. At Niagara Falls:, 2002.

[1] REN Song, OUYANG Xun, WU Jian-xun, CHEN Fan, WANG Liang, CHEN Jie. Elastic-swelling analytical model of anhydrite rock considering time-dependent effect[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(5): 896-905.
[2] ZHANG Xue-hui, CHEN Ji-xiang, BAI Yun, CHEN Ang, HUANG De-zhong. Ground surface deformation induced by quasi-rectangle EPB shield tunneling[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(2): 317-324.
[3] GUO Kang-shi, ZHUANG Yan-feng, DUAN Wei. Experimental study on micro-mechanism of electro-osmosis using montmorillonite[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(12): 2373-2382.
[4] KE Han, DONG Ding, CHEN Yun-min, GUO Cheng, FENG Shi-jin. Nonlinear elastic model for municipal solid waste considering dilatancy effect[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(11): 2158-2164.