Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (12): 2478-2486    DOI: 10.3785/j.issn.1008-973X.2022.12.017
    
Experimental study on compacted steel slag-bentonite mixtures as hydraulic barrier material of cover
Jia-qi NI1,2(),Liang-tong ZHAN1,2,*(),Song FENG1,2,3,Ling-gang KONG1,2,Tian FENG1,2
1. Geotechnical Engineering Department, Zhejiang University, Hangzhou 310058, China
2. Key Laboratory of Soft Soils and Geoenvironmental Engineering of Ministry of Education, Zhejiang University, Hangzhou 310058, China
3. College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
Download: HTML     PDF(1484KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Bentonite was used to modify steel slag to improve impermeability of steel slag in cover liner of solid waste landfills. The saturated hydraulic conductivity of the compacted steel slag-bentonite mixtures ks was investigated through the flexible-wall permeation tests. Then, the pore size distributions, interlayer spacing of montmorillonite and mineral morphology were investigated through mercury intrusion porosimetry tests, X-ray diffraction tests and scanning electron microscopy tests, in order to analyse the impact mechanism of the ks at the microscopic scale. Thereafter, a formula and a preparation method were proposed, which meets the permeability requirement of the hydraulic barrier (ks≤10?9 m/s). Results showed that the ks of the specimen, treated by pre-hydration of bentonite, was reduced to 1/2 of that of the untreated one. After improving the gradation of steel slag, the content of macropores between the steel slag particles was decreased, reducing the ks of the specimens to 1/5 of that of the specimen with poorly graded steel slag. The ks and pore size distribution of the specimens mixed steel slag with Wyoming were similar to those of sodium-activated calcium bentonite. The high salt content leachate of steel slag results in the increase of the interlayer spacing and the decrease of the bound water of montmorillonite. Subsequently, the osmotic swelling of bentonite is suppressed. Water-washing treatment of steel slag can alleviate the suppression effect and the formation of montmorillonite clusters, and reduce the ks of specimens to 1/10 of that of the untreated one.



Key wordssteel slag      bentonite      saturated hydraulic conductivity      hydraulic barrier      microscopic characteristic     
Received: 11 November 2021      Published: 03 January 2023
CLC:  TU 443  
Fund:  国家重点研发计划(2019YFC1806003);国家自然科学基金杰出青年基金项目(51625805)
Corresponding Authors: Liang-tong ZHAN     E-mail: n310414394@foxmail.com;zhanlt@zju.edu.cn
Cite this article:

Jia-qi NI,Liang-tong ZHAN,Song FENG,Ling-gang KONG,Tian FENG. Experimental study on compacted steel slag-bentonite mixtures as hydraulic barrier material of cover. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2478-2486.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.12.017     OR     https://www.zjujournals.com/eng/Y2022/V56/I12/2478


压实钢渣-膨润土覆盖防渗材料试验研究

为了实现钢渣在工业固废堆场覆盖层中的应用,采用膨润土改良钢渣的防渗性. 通过柔性壁渗透试验,测量压实钢渣-膨润土混合材料的饱和渗透系数ks. 结合压汞法、X射线衍射和扫描电镜技术,分别观察试样的孔隙分布、蒙脱石矿物层间距和矿物形态,从微观尺度分析ks的影响机理. 提出满足防渗层渗透性要求(ks≤10?9 m/s)的配方与制备方法. 结果表明,膨润土预水化处理使试样的ks降低至未处理试样的1/2. 改良钢渣级配后,钢渣颗粒间的大孔隙比例降低,使试样的ks降低至不良级配试样的1/5. 钢渣掺和怀俄明膨润土试样的ks和孔隙分布与掺和钠化钙基膨润土试样的相似. 钢渣的高盐浸出液使蒙脱石层间距增大、结合水减少,对膨润土的渗透溶胀起抑制作用;钢渣水洗处理可以缓解该抑制作用,减少蒙脱石团簇的产生,使试样的ks降低至未处理试样的1/10.


关键词: 钢渣,  膨润土,  饱和渗透系数,  防渗层,  微观特征 
试验材料 Gs ωL/% ωP/% 土的类别 wB/% SI/(mL·2g?1)
硅酸二钙 氢氧化钙 方镁石 蒙脱石
钢渣 3.59 级配良好砾(GW) 33.1 26.8 26.8
钠化钙基膨润土 2.56 258.1 31.1 高液限黏土(CH) 68.2 20.5
怀俄明膨润土 2.58 255.1 21.2 高液限黏土(CH) 71.4 36.2
Tab.1 Physical and chemical properties of steel slag and bentonite
Fig.1 Particle-size distributions of steel slag and bentonite
Fig.2 Compaction characteristics of steel slag-bentonite mixtures (steel slag of particle distribution Ⅰ)
组号 试样编号 钢渣级配 ρd,act/(g·cm?3) 制样工艺 膨润土种类 wp /% 钢渣水洗处理
1 1BS5D PD Ⅰ 1.90 传统拌和 钠化钙基膨润土 5 ×
1BS10D(a/b) 1.91 10
1BS15D 1.91 15
2 2BS5P PD Ⅰ 1.90 预水化制样 钠化钙基膨润土 5 ×
2BS10P(a/b) 1.90 10
2BS15P 1.91 15
3 3BS10D(a/b) PD Ⅱ 1.91 传统拌和 钠化钙基膨润土 10 ×
4 4BW5D PD Ⅰ 1.90 传统拌和 怀俄明膨润土 5 ×
4BW10D 1.91 10
4BW15D 1.92 15
4BW10P 1.91 预水化制样 10
5 5BS10P(a/b) PD Ⅰ 1.91 预水化制样 钠化钙基膨润土 10
5BW10P 1.91 怀俄明膨润土 10
Tab.2 Scheme of hydraulic conductivity tests using flexible-wall permeater
Fig.3 Effects of specimen preparation method on saturated hydraulic conductivity of compacted steel slag-bentonite specimens at different sodium-activated calcium bentonite contents
Fig.4 Effects of steel slag gradation on saturated hydraulic conductivity of compacted steel slag-bentonite specimens
Fig.5 Effects of steel slag gradation on pore size distribution of compacted steel slag-bentonite specimens
Fig.6 Effects of bentonite type on hydraulic conductivity of compacted steel slag-bentonite specimens under different bentonite contents
Fig.7 X-ray diffraction curves of bentonite specimens
Fig.8 Effects of type of bentonite on pore size distribution of compacted steel slag-bentonite specimens
Fig.9 Effect of water-washing treatment of steel slag on saturated hydraulic conductivity of compacted steel slag-bentonite specimens
Fig.10 X-ray diffraction curves of sodium-activated calcium bentonite specimens
Fig.11 Scanning electron microscope images of compacted steel slag-bentonite specimens
[1]   GUO J, BAO Y, WANG M Steel slag in China: treatment, recycling, and management[J]. Waste Management, 2018, 78: 318- 330
doi: 10.1016/j.wasman.2018.04.045
[2]   DIENER S, ANDREAS L, HERRMANN T, et al Accelerated carbonation of steel slags in a landfill cover construction[J]. Waste Management, 2010, 30 (1): 132- 139
doi: 10.1016/j.wasman.2009.08.007
[3]   詹良通, 焦卫国, 孔令刚, 等 黄土作为西北地区填埋场覆盖层的可行性及设计厚度分析[J]. 岩土力学, 2014, 35 (12): 3361- 3369
ZHAN Liang-tong, JIAO Wei-guo, KONG Ling-gang, et al Feasibility analysis of using loess as soil cover material for landfills in Northwest China and its analysis of design thickness[J]. Rock and Soil Mechanics, 2014, 35 (12): 3361- 3369
doi: 10.16285/j.rsm.2014.12.011
[4]   中华人民共和国住房城乡建设部. 生活垃圾卫生填埋处理技术规范: GB/T 50869-2013 [S]. 北京: 中国建筑工业出版社, 2013.
[5]   HERRMANN I, ANDREAS L, DIENER S Steel slag used in landfill cover liners: laboratory and field tests[J]. Waste Management and Research, 2010, 28 (12): 1114- 1121
doi: 10.1177/0734242X10365095
[6]   KENNEY T C, VEEN W A V, SWALLOW M A, et al Hydraulic conductivity of compacted bentonite-sand mixtures[J]. Canadian Geotechnical Journal, 1992, 29 (3): 364- 374
doi: 10.1139/t92-042
[7]   TONG S, SHACKELFORD C D Standardized hydraulic conductivity testing of compacted sand-bentonite mixtures[J]. Geotechnical Testing Journal, 2016, 39 (6): 1015- 1029
[8]   SCALIA LV J, BENSON C H Polymer fouling and hydraulic conductivity of mixtures of sodium bentonite and a bentonite-polymer composite[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143 (4): 04016112
doi: 10.1061/(ASCE)GT.1943-5606.0001628
[9]   SCALIA J, BENSON C H, BOHNHOFF G L, et al Long-term hydraulic conductivity of a bentonite-polymer composite permeated with aggressive inorganic solutions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140 (3): 04013025
doi: 10.1061/(ASCE)GT.1943-5606.0001040
[10]   朱伟, 徐浩青, 王升位, 等 CaCl2溶液对不同黏土基防渗墙渗透性的影响 [J]. 岩土力学, 2016, 37 (5): 1224- 1230
ZHU Wei, XU Hao-qing, WANG Sheng-wei, et al Influence of CaCl2 solution on the permeability of different clay-based cutoff walls [J]. Rock and Soil Mechanics, 2016, 37 (5): 1224- 1230
[11]   BOHNHOFF G L, SHACKELFORD C D Hydraulic conductivity of polymerized bentonite-amended backfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 140 (3): 04013028
[12]   沈胜强, 杜延军, 魏明俐, 等 CaCl2作用下PAC改良膨润土滤饼的渗透特性研究 [J]. 岩石力学与工程学报, 2017, 36 (11): 2810- 2817
SEHN Sheng-qiang, DU Yan-jun, WEI Ming-li, et al Hydraulic conductivity of filter cakes of polyanionic cellulose-amended bentonite slurries in calcium chloride solutions[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (11): 2810- 2817
[13]   中华人民共和国水利部. 土工试验方法标准: GB/T 50123—1999 [S]. 北京: 中国计划出版社, 1999.
[14]   国家教育委员会. 转靶多晶体X 射线衍射方法通则: JY/T 009-1996 [S]. 北京: 科学技术文献出版社, 1996.
[15]   American Society of Testing Materials. Standard test method for swell index of clay mineral component of geosynthetic clay liners: D5890 [S]. [S. l.]: ASTM, 2019.
[16]   傅贤雷, 杜延军, 尤星源, 等 赤泥渗滤液对改性GCL防渗性能的影响[J]. 岩土工程学报, 2021, 43 (4): 706- 714
FU Xian-lei, DU Yan-jun, YOU Xing-yuan, et al Influences of red mud leachates on hydraulic performance of a modified geosynthetic clay liner[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (4): 706- 714
[17]   范日东. 重金属作用下土—膨润土竖向隔离屏障化学相容性和防渗截污性能研究[D]. 南京: 东南大学, 2017.
FAN Ri-dong. Study on chemical compatibility and containment performance of soil-bentonite cutoff wall exposed to heavy metal contaminants [D]. Nanjing: Southeast University, 2017.
[18]   American Society of Testing Materials. Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter: D5084 [S]. [S.l.]: ASTM, 2010.
[19]   徐浩青, 周爱兆, 姜朋明, 等 不同砂-膨润土垂直防渗墙填筑土料的掺量研究[J]. 岩土力学, 2019, 40 (Suppl.1): 424- 430
XU Hao-qing, ZHOU Ai-zhao, JIAO Peng-ming, et al Study on bentonite content of different sand-bentonite vertical cutoff wall backfill materials[J]. Rock and Soil Mechanics, 2019, 40 (Suppl.1): 424- 430
doi: 10.16285/j.rsm.2019.0244
[20]   HASHEMI M A, MASSART T J, SALAGER S, et al Pore scale characterization of lime-treated sand–bentonite mixtures[J]. Applied Clay Science, 2015, 111: 50- 60
doi: 10.1016/j.clay.2015.04.001
[21]   FREDLUND D G, RAHARDJO H. Soil mechanics for unsaturated soils [M]. [S.l.]: John Wiley and Sons, 1993.
[22]   范日东, 杜延军, 刘松玉, 等 无机盐溶液作用下砂-膨润土竖向隔离屏障材料化学相容性试验研究[J]. 岩土力学, 2020, 41 (3): 736- 746
FAN Ri-dong, DU Yan-jun, LIU Song-yu, et al Experimental study on chemical compatibility of sand-bentonite backfills for vertical cutoff barrier permeated with inorganic salt solutions[J]. Rock and Soil Mechanics, 2020, 41 (3): 736- 746
doi: 10.16285/j.rsm.2019.0339
[23]   杨孔立, 陈成 预筛分细料-膨润土渗透性能研究[J]. 低温建筑技术, 2019, 41 (6): 80- 83
YANG Kong-li, CHEN Cheng Study on the permeability of pre-screened fine materials-bentonite[J]. Low Temperature Architecture Technology, 2019, 41 (6): 80- 83
doi: 10.13905/j.cnki.dwjz.2019.06.019
[24]   JO H Y, KATSUMI T, BENSON C H, et al Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-species salt solutions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127 (7): 557- 567
doi: 10.1061/(ASCE)1090-0241(2001)127:7(557)
[25]   秦爱芳, 胡宏亮 碱性溶液饱和高庙子钙基膨润土膨胀特性及预测[J]. 岩土力学, 2020, 41 (Suppl.1): 123- 131
QING Ai-fang, HU Hong-liang Swelling characteristics of Gaomiaozi Ca-bentonite saturated in alkaline solution and prediction[J]. Rock and Soil Mechanics, 2020, 41 (Suppl.1): 123- 131
doi: 10.16285/j.rsm.2019.1228
[26]   RUHL J L, DANIEL D E Geosynthetic clay liners permeated with chemical solutions and leachates[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123 (4): 369- 381
doi: 10.1061/(ASCE)1090-0241(1997)123:4(369)
[27]   ZHANG L SUN D A, JIA D. Shear strength of GMZ07 bentonite and its mixture with sand saturated with saline solution[J]. Applied Clay Science, 2016, 132-133: 24- 32
doi: 10.1016/j.clay.2016.08.004
[1] Qi-zhen KANG,Jing-jing LI,Yu-chao LI,Shi-yuan YAO,Yun-min CHEN. Permeability of sodium polyacrylate modified calcium bentonite in acid-base salt solution[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1877-1884.
[2] Wei YANG,Meng-jian REN,Ren-peng CHEN,Xue-ying LIU,Xin KANG. Salt resistance of modified bentonite in complex environment[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1885-1893.
[3] XIANG Guo-sheng, FANG Yuan, XU Yong-fu. Swelling characteristics of GMZ01 bentonite affected by cation exchange reaction[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 931-936.
[4] CHEN Bao, ZHANG Hui-xin, CHEN Ping. Influence of hyper-alkaline solution infiltration on microscopic pore structure of compacted GMZ bentonite[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(4): 602-608.