Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (10): 1877-1884    DOI: 10.3785/j.issn.1008-973X.2021.10.009
    
Permeability of sodium polyacrylate modified calcium bentonite in acid-base salt solution
Qi-zhen KANG1,2(),Jing-jing LI3,Yu-chao LI1,2,*(),Shi-yuan YAO1,2,Yun-min CHEN1,2
1. Key Laboratory of Soils and Geoenvironmental Engineering, Ministry of Education, Zhejiang University, Hangzhou 310058, China
2. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
3. Zhejiang Fenghong New Materials Limited Company, Huzhou 313300, China
Download: HTML     PDF(1025KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Sodium polyacrylate (PAA-Na) was used to modify sodium calcium bentonite to improve swelling and impermeability aiming at the problem that the anti-fouling effect of bentonite in high-salt or strong acid-base solutions deteriorates due to the reduction of bentonite’s swelling and impermeability. The effect law of different concentrations of NaCl solution and acid-base solution on sodium polyacrylate modified calcium bentonite PB2, PB5, PB10, PBHV5 and Wyoming bentonite’s swelling characteristics and permeability characteristics was explored by free swelling test and improved fluid loss test. Results show that the swelling characteristics and permeability of PB10 in acid-base salt solution are better than that of Wyoming bentonite, while these characteristics of PBHV5 are similar to Wyoming bentonite. The swelling and impermeability of PBHV5 and PB10 were decreased by strong acid condition with pH = 2 and strong alkali condition with pH = 12. The permeability coefficients of the three kinds of bentonites increase with the increase of the swelling index and the void ratio in the acid-base solutions and low concentration (≤20 mmol/L) salt solution, which is speculated to be the reason for the delamination of the crystal layer structure. The swelling of bentonites become smaller and more seepage channels are formed in the medium and high concentration (>20 mmol/L) salt solution. The permeability coefficients increase with the decrease of the swelling index and the void ratio. In the studied polymer content range (2%~10%), the larger the polymer content is, the better the impermeability and chemical compatibility of bentonite are. The polymer content should not be less than 5% if the goal is to achieve better characters than Wyoming natural sodium bentonite.



Key wordsmodified bentonite      sodium polyacrylate (PAA-Na)      permeability coefficient      swelling index      acid-base salt solution      chemical compatibility     
Received: 23 November 2020      Published: 27 October 2021
CLC:  TU 46  
Fund:  国家自然科学基金资助项目(42077241);国家重点研发计划资助项目(2019YFC1806000)
Corresponding Authors: Yu-chao LI     E-mail: kangqizhen@zju.edu.cn;liyuchao@zju.edu.cn
Cite this article:

Qi-zhen KANG,Jing-jing LI,Yu-chao LI,Shi-yuan YAO,Yun-min CHEN. Permeability of sodium polyacrylate modified calcium bentonite in acid-base salt solution. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1877-1884.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.10.009     OR     https://www.zjujournals.com/eng/Y2021/V55/I10/1877


PAA-Na改性膨润土在酸碱盐溶液中的渗透性

针对高盐或强酸碱溶液中以膨润土为主材的防污屏障的阻控效果因膨润土膨胀性和抗渗性的降低而劣化的问题,采用聚丙烯酸钠(PAA-Na)对国产钠化钙基膨润土进行改性,提高膨胀性和防渗性. 通过自由膨胀试验和改进滤失试验,研究不同浓度的NaCl溶液和酸碱溶液对聚丙烯酸钠改性膨润土PB2、PB5、PB10、PBHV5和美国怀俄明天然钠基膨润土的膨胀特性、渗透特性的影响规律. 结果表明,在酸碱盐溶液中PB10的膨胀特性和渗透性优于怀俄明膨润土,PBHV5与怀俄明膨润土相近. pH=2的强酸条件和pH=12的强碱条件会降低PBHV5和PB10的膨胀性和抗渗性,pH=3~11的酸碱溶液对两者的影响很小. 在酸碱溶液和低浓度(≤20 mmol/L)盐溶液中,由于晶层结构层剥离,3种膨润土渗透系数随着膨胀指数和孔隙比的增大而增大;在中高浓度(>20 mmol/L)盐溶液中,膨润土膨胀性降低,渗流通道增多,产生了渗透系数随膨胀指数和孔隙比的减小而增大的现象. 在所研究的聚合物掺量(2%~10%)下,膨润土抗渗性和化学相容性随着聚合物掺量的增大而提高,若目标取得优于美国怀俄明天然钠基膨润土的特性,聚合物掺量须不低于5%.


关键词: 改性膨润土,  聚丙烯酸钠(PAA-Na),  渗透系数,  膨胀指数,  酸碱盐溶液,  化学相容性 
土样 wm /% 基土产地 制备工艺 聚合物类型 a /% pH SIw /(mL·(2g)?1
怀俄明土 71.4 美国 8.1 30.8
PB2 77.1 辽宁朝阳 湿法改性 PAA-Na 2 8.8 45.2
PB5 77.1 辽宁朝阳 湿法改性 PAA-Na 5 8.9 51.7
PB10 77.1 辽宁朝阳 湿法改性 PAA-Na 10 8.9 52.7
PBHV5 87.3 浙江安吉 湿法改性 PAA-Na 5 9.1 27.1
Tab.1 Basic information of bentonites tested
Fig.1 Swelling index in acid, alkali and salt solution
Fig.2 Permeation conductivity of bentonite in salt solution
Fig.3 SEM photos of mud cake in different solutions
Fig.4 Permeation conductivity of bentonite in acid-base solution
Fig.5 Relationship between pore ratio and solution concentration in acid, alkali and salt solution
[1]   KATSUMI T, BENSON C H, EDIL T B Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-species salt solutions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127 (7): 557- 567
doi: 10.1061/(ASCE)1090-0241(2001)127:7(557)
[2]   KOLSTAD D, BENSON C, EDIL T Hydraulic conductivity and swell of nonprehydrated GCLs permeated with multi-species inorganic solutions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130 (12): 1236- 1249
doi: 10.1061/(ASCE)1090-0241(2004)130:12(1236)
[3]   SHACKELFORD C D, BENSON C H, KATSUMI T, et al Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids[J]. Geotextiles and Geomembranes, 2000, 8 (2-4): 133- 161
[4]   LANGE K, ROWE R K, JAMIESON H The potential role of geosynthetic clay liners in mine water treatment systems[J]. Geotextiles and Geomembranes, 2010, 28 (2): 199- 205
doi: 10.1016/j.geotexmem.2009.10.003
[5]   DI EMIDIO G, MAZZIERI F, VERASTEGUI FLORES R D, et al Polymer-treated bentonite clay for chemical-resistant geosynthetic clay liners[J]. Geosynthetics International, 2015, 22 (1): 125- 137
doi: 10.1680/gein.14.00036
[6]   SCALIA J, BENSON C, BOHNHOFF G, et al Long-term hydraulic conductivity of a bentonite-polymer composite permeated with aggressive inorganic solutions.[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140 (3): 04013025
doi: 10.1061/(ASCE)GT.1943-5606.0001040
[7]   KATSUMI T, HIROYUKI ISHIMORI, ONIKATA M Long-term barrier performance of modified bentonite materials against sodium and calcium permeant solutions[J]. Geotextiles and Geomembranes, 2007, (26): 14- 30
[8]   ONIKATA M, KONDO M, KAMON M. Development and characterization of a multiswellable bentonite [C]// Proceedings of the 2nd International Congress on Environmental Geotechnics. Rotterdam: Balkema, 1996: 587–590.
[9]   DI EMIDIO G, VAN IMPE W, MAZZIERI F. A polymer enhanced clay for impermeable geosynthetic clay liners [C]// Proceedings of 6th International Conference on Environmental Geotechnics. New Delhi: ISSMGE, 2010: 963–967.
[10]   DI EMIDIO G, VAN IMPE W, FLORES V. Advances in geosynthetic clay liners: polymer enhanced clays [C]// Geo-frontiers Congress. Advances in Geotechnical Engineering. Dallas, USA: Geotechnical Special Publication, 2011: 1931–1940.
[11]   DE CAMILLIS M, DI EMIDIO G, VERASTEGUI−FLORES D. Polymer treated clays subjected to wet−dry cycling with seawater [C]// Proceedings of the 7th International Congress on Environmental Geotechnics. Melbourne, Australia: Engineers Australia, 2014: 1002–1008.
[12]   KOLSTAD D C, BENSON C H, EDIL T B, et al Hydraulic conductivity of a dense prehydrated GCL permeated with aggressive inorganic solutions[J]. Geosynthetics International, 2014, 11 (3): 233- 241
[13]   BUCHHOLZ F, GRAHAM A. Modern superabsorbent polymer technology [M]. New York: Wiley, 1998: 33-41.
[14]   CHEN J N, HULYA S, BENSON C H, et al Hydraulic conductivity of bentonite–polymer composite geosynthetic clay liners permeated with coal combustion product leachates[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145 (9): 04019038
doi: 10.1061/(ASCE)GT.1943-5606.0002105
[15]   TIAN K, WILLIAM J L, BENSON C H Polymer elution and hydraulic conductivity of bentonite-polymer composite geosynthetic clay liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145 (10): 04019071
doi: 10.1061/(ASCE)GT.1943-5606.0002097
[16]   TIAN K, BENSON C H Hydraulic conductivity of geosynthetic clay liners exposed to low-level radioactive waste leachate[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142 (8): 04016037
doi: 10.1061/(ASCE)GT.1943-5606.0001495
[17]   傅贤雷, 杜延军, 尤星源, 等 赤泥渗滤液对改性GCL防渗性能的影响[J]. 岩土工程学报, 2021, 43 (4): 706- 714
FU Xian-lei, DU Yan-jun, YOU Xing-yuan, et al Influence of red mud leachates on hydraulic performance of a modified geosynthetic clay liner[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (4): 706- 714
[18]   沈胜强, 杜延军, 魏明俐, 等 CaCl2作用下PAC改良膨润土滤饼的渗透特性研究 [J]. 岩石力学与工程学报, 2017, 36 (11): 2810- 2817
SHEN Sheng-qiang, DU Yan-jun, WEI Ming-li, et al Hydraulic conductivity of filter cakes of polyanionic cellulose-amended bentonite slurries in calcium chloride solutions[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (11): 2810- 2817
[19]   SCALIA J, BENSON C H, EDIL T B, et al. Geosynthetic clay liners containing bentonite polymer nanocomposites [C]// Proceedings of the Conference Geo-Frontiers. Dallas: Geotechnical Special Publication, 2011: 2001–2009.
[20]   ASHMAWY A E, DARWISH N, SOTELO, et al Hydraulic performance of untreated and polymer−treated bentonite in inorganic landfill leachates[J]. Clays Clay Miner, 2002, 50 (5): 546- 552
doi: 10.1346/000986002320679288
[21]   DENG Y J, DIXON G, WHITE R, et al Bonding between polyacrylamide and smectite[J]. Colloids and Surfaces, 2006, 281 (1): 82- 91
[22]   CHUNG J, DANIEL D Modified fluid loss test as an improved measure of hydraulic conductivity for bentonite[J]. Geotechnical Testing Journal, 2008, 31 (3): 243- 251
[23]   NAKANO A, LI L Y, OHTSUBO M, et al Lead retention mechanisms and hydraulic conductivity studies of various bentonites for geoenvironment applications[J]. Environmental Technology, 2008, 29 (5): 505- 514
doi: 10.1080/09593330801984258
[24]   潘倩, 陈云敏, 李育超, 等 膨润土泥饼渗透系数及对隔离墙渗透性的影响分析[J]. 浙江大学学报: 工学版, 2017, 51 (2): 231- 237
PAN Qian, CHEN Yun-min, LI Yu-chao, et al Hydraulic conductivity of bentonite filter cake and its impact on permeability of cutoff walls[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (2): 231- 237
[25]   田丽霞 长三角地区岩土工程水质分析过程探讨[J]. 城市道路与防洪, 2014, (7): 414- 417
TIAN Li-xia Discussion on water quality analysis process of geotechnical engineering in Yangtze River Delta[J]. Urban Roads and Flood Control, 2014, (7): 414- 417
[26]   于泽溪, 李育超, 陈冠年 钠质膨润土渗透性与膨胀性及可塑性的相关性[J]. 哈尔滨工业大学学报, 2020, (1): 1- 11
YU Ze-xi, LI Yu-chao, CHEN Guan-nian Correlation between permeability swelling and plasticity of sodium bentonite[J]. Journal of Harbin Institute of Technology, 2020, (1): 1- 11
doi: 10.11918/201901003
[27]   Standard test method for swell index of clay mineral component of geosynthetic clay liners: ASTM D5890 [S]. West Conshohocken: ASTM, 2018.
[28]   LIU Y, WILL P, GATES A B, et al Fluid loss as a quick method to evaluate hydraulic conductivity of geosynthetic clay liners under acidic conditions[J]. Canadian Geotechnical Journal, 2014, 51 (2): 158- 163
doi: 10.1139/cgj-2013-0241
[29]   LAIRD D Influence of layer charge on swelling of smectites[J]. Applied Clay Science, 2006, (34): 74- 87
[30]   THENG B. Formation and properties of clay-polymer complexes [M]. Amsterdam: Elsevier, 2012.
[31]   KIM S, PALOMINO A M Factors influencing the synthesis of tunable polymer-clay nanocomposites using bentonite and polyacrylamide[J]. Applied Clay Science, 2011, 51 (4): 491- 498
doi: 10.1016/j.clay.2011.01.017
[32]   SCALIA J, BOHNHOFF G L, SHACKELFORD C D, et al Enhanced bentonites for containment of inorganic waste leachates by GCLs[J]. Geosynthetics International, 2018, 25 (4): 392- 411
doi: 10.1680/jgein.18.00024
[33]   陈宝, 张会新, 陈萍 高碱溶液对高庙子膨润土侵蚀作用的研究[J]. 岩土工程学报, 2013, 35 (1): 181- 186
CHEN Bao, ZHANG Hui-xin, CHEN Ping Erosion effect of hyper-alkaline solution on Gaomiaozi bentonite[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (1): 181- 186
[1] Wei YANG,Meng-jian REN,Ren-peng CHEN,Xue-ying LIU,Xin KANG. Salt resistance of modified bentonite in complex environment[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1885-1893.
[2] CHEN Guo-hong, XIE Kang-he, CHENG Yong-feng, XU Yan. Analytical solution for consolidation of sand-drained ground considering
variation of permeability coefficient in smeared zone
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(4): 665-670.