A new thermal-mechanical coupled numerical model was proposed based on the lattice discrete element method (LDEM), aiming at the heat conduction and thermal cracking of quasi-brittle materials. In LDEM, in order to simulate the numerical test of the temperature conduction and crack propagation, the equivalent conversion of the heat transfer process between the lattice discrete system and the continuum was carried out, combined with the linear expansion formula of the lattice element. Taking the heat conduction and thermoelastic stress of the plate, and the cracking caused by the temperature gradient and thermal mismatch as examples, the model was verified. In addition, the model was applied to the numerical simulation of the meso-level concrete temperature-stress test. Results show that the LDEM thermal-mechanical coupling model can simulate the heat conduction process of quasi-brittle materials, as well as the crack initiation and propagation under the influence of temperature effectively, which provides a powerful tool for studying the thermal cracking process and mechanism of quasi-brittle materials.
Fig.1Discrete mode and basic structure of lattice discrete element method
Fig.2Schematic diagram of lattice discrete element method mesh and crack simulation
Fig.3Equivalent parallel section of continuum and basic module
Fig.4Bilinear constitutive model of load-strain
Fig.5Comparison of LDEM solution and analytical solution of plate temperature and stress at different times
Fig.6Comparison of plate temperature distribution under different grid sizes
Fig.7Comparison of stress results between LDEM solution and analytical solutions under different mesh sizes
Fig.8Comparison of finite element solution and LDEM solution for temperature distribution of flat plate
Fig.9Comparison of LDEM solution and analytical solution of plate temperature and stress at different times
Fig.10Thermal cracking experiment on non-uniformity of reinforced concrete materials
参数
数值
混凝土保护层 (b≥r≥a)
钢筋内芯 (r<a)
半径/m
b=0.15
a=0.03
厚度 h/m
0.002
0.002
弹性模量 E/GPa
20
40
泊松比 μ
0.2
0.3
密度 ρ/(kg·m?3)
2300
7850
抗拉强度 ft/MPa
3
235
断裂能 Gf/(N·m?1)
100
—
线膨胀系数 α/ K?1
7.00×10?6
2.20×10?5
初始温度 θ0/℃
0
0
温升幅度 Δθ /℃
100
100
Tab.1Thermal and mechanical parameters of reinforced concrete
Fig.11Comparison between LDEM solution and analytical solutions of concrete circumferential stress
Fig.12Crack morphology of reinforced concrete at different temperature rise times
参数
数值
参数
数值
弹性模量 E/GPa
69
比热 c/ (J·kg?1·K?1)
920
泊松比 μ
0.25
线膨胀系数 α/K?1
1×10?5
密度 ρ/(kg·m?3)
2600
初始温度 θ0/℃
20
抗拉强度 ft/MPa
9
边界温度 θc/℃
20
断裂能 Gf/(N·m?1)
500
中心孔温度 θh/℃
20~200
导热系数 k/(W·m?1·K?1)
1.2
—
—
Tab.2Thermal and mechanical parameters of granite
Fig.13Temperature distribution and crack morphology of granite at different times
Fig.14Experimental results and numerical simulation results of granite thermal cracking
Fig.15Mesoscopic models of concrete with different aggregate volume fractions
参数
数值
砂浆基质
骨料
界面过渡区
弹性模量 E/GPa
4
50
2.4
泊松比 μ
0.20
0.16
0.20
密度 ρ/(kg·m?3)
2440
2620
2440
抗拉强度 ft/MPa
2.06
20.00
1.24
断裂能 Gf/(N·m?1)
60
500
40
导热系数 k//(W·m?1·K?1)
1.106
2.440
0.940
线膨胀系数 α/K?1
1.2×10?5
0.5×10?5
1.2×10?5
比热 c/ (J·kg?1·K?1)
762.3
719.8
762.3
Tab.3Thermal and mechanical parameters of concrete components
Fig.16Temperature and deformation distribution of specimens with different aggregate volume fraction
Fig.17Shrinkage comparison of concrete specimens with different aggregate volume fraction
Fig.18Comparison of constraint stresses of concrete specimens with different aggregate volume fraction
Fig.19Cracking pattern of specimens with different aggregate volume fractions
[1]
LIU B, ZHOU W, WANG Q, et al An AOIMLS enhanced LIBEM and for solving 3D thermo-elastic problems and non-homogeneous heat conduction problems with heat generation[J]. International Journal of Thermal Sciences, 2021, 163: 106864
doi: 10.1016/j.ijthermalsci.2021.106864
[2]
GU Y, HE X, CHEN W, et al Analysis of three-dimensional anisotropic heat conduction problems on thin domains using an advanced boundary element method[J]. Computers and Mathematics with Applications, 2018, 75 (1): 33- 44
doi: 10.1016/j.camwa.2017.08.030
[3]
GAUTAM P K, VERMA A K, JHA M K, et al Effect of high temperature on physical and mechanical properties of granite[J]. Journal of Applied Geophysics, 2018, 159: 460- 474
doi: 10.1016/j.jappgeo.2018.07.018
[4]
ZHOU W, QI T, LIU X, et al A meso-scale analysis of the hygro-thermo-chemical characteristics of early-age concrete[J]. International Journal of Heat and Mass Transfer, 2019, 129: 690- 706
doi: 10.1016/j.ijheatmasstransfer.2018.10.001
[5]
ULM F J, COUSSY O, BAŽANT Z P The "Chunnel" fire. I: chemoplastic softening in rapidly heated concrete[J]. Journal of Engineering Mechanics, 1999, 125 (3): 272- 282
doi: 10.1061/(ASCE)0733-9399(1999)125:3(272)
[6]
YASEEN M. Use of thermal heating /cooling process for rock fracturing: numerical and experimental analyze [D]. Lille: Université Lille1 Sciences et Technologies, 2014.
[7]
KIM J S, KWON S K, SANCHEZ M, et al Geological storage of high level nuclear waste[J]. KSCE Journal of Civil Engineering, 2011, 15: 721- 737
doi: 10.1007/s12205-011-0012-8
[8]
AHMED M F, WAQAS U, ARSHAD M, et al Effect of heat treatment on dynamic properties of selected rock types taken from the Salt Range in Pakistan[J]. Arabian Journal of Geosciences, 2018, 11: 728
doi: 10.1007/s12517-018-4058-5
[9]
ZHAO X G, XU H R, ZHAO Z, et al Thermal conductivity of thermally damaged Beishan granite under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 115: 121- 136
doi: 10.1016/j.ijrmms.2019.01.014
[10]
KUMARI W G P, BEAUMONT D M, RANJITH P G, et al An experimental study on tensile characteristics of granite rocks exposed to different high-temperature treatments[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2019, 5: 47- 64
doi: 10.1007/s40948-018-0098-2
[11]
AMIN M N, KIM J S, LEE Y, et al Simulation of the thermal stress in mass concrete using a thermal stress measuring device[J]. Cement and Concrete Research, 2009, 39 (3): 154- 164
doi: 10.1016/j.cemconres.2008.12.008
[12]
JIANG W, SPENCER B W, DOLBOW J E Ceramic nuclear fuel fracture modeling with the extended finite element method[J]. Engineering Fracture Mechanics, 2020, 223: 106713
doi: 10.1016/j.engfracmech.2019.106713
RODRIGUEZ J M, CARBONELL J M, CANTE J C, et al The particle finite element method (PFEM) in thermo-mechanical problems[J]. International Journal for Numerical Methods in Engineering, 2016, 107 (9): 733- 785
doi: 10.1002/nme.5186
[15]
LI W, SHIRVAN K Multiphysics phase-field modeling of quasi-static cracking in urania ceramic nuclear fuel[J]. Ceramics International, 2020, 47 (1): 793- 810
[16]
WANG Y T, ZHOU X P Peridynamic simulation of thermal failure behaviors in rocks subjected to heating from boreholes[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 117: 31- 48
doi: 10.1016/j.ijrmms.2019.03.007
[17]
LIU H, ZHANG K, SHAO S, et al Numerical investigation on the cooling-related mechanical properties of heated Australian Strathbogie granite using discrete element method[J]. Engineering Geology, 2020, 264: 105371
doi: 10.1016/j.enggeo.2019.105371
[18]
JIAO Y Y, ZHANG X L, ZHANG H Q, et al A coupled thermo-mechanical discontinuum model for simulating rock cracking induced by temperature stresses[J]. Computers and Geotechnics, 2015, 67: 142- 149
doi: 10.1016/j.compgeo.2015.03.009
[19]
LIU B, ZHOU W, WANG Q The novel boundary integral equation with adaptive orthogonal IMLS based line integration method for cracked domains under thermal stress[J]. Engineering Fracture Mechanics, 2020, 239: 107325
doi: 10.1016/j.engfracmech.2020.107325
[20]
YAN C, YANG Y, WANG G A new 2D continuous-discontinuous heat conduction model for modeling heat transfer and thermal cracking in quasi-brittle materials[J]. Computers and Geotechnics, 2021, 137: 104231
doi: 10.1016/j.compgeo.2021.104231
[21]
常晓林, 胡超, 马刚, 等 模拟岩体失效全过程的连续−非连续变形体离散元方法及应用[J]. 岩石力学与工程学报, 2011, 30 (10): 2004- 2011 CHANG Xiao-ling, HU Chao, MA Gang, et al Continuous-discontinuous deformable discrete element method to simulate the whole failure process of rock masses and application[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30 (10): 2004- 2011
[22]
马刚, 周创兵, 常晓林, 等 岩石破坏全过程的连续−离散耦合分析方法[J]. 岩石力学与工程学报, 2011, 30 (12): 2444- 2455 MA Gang, ZHOU Chuang-bing, CHANG Xiao-ling, et al Continuous-discontinuous coupling analysis for whole failure process of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30 (12): 2444- 2455
[23]
JOULIN C, XIANG J, LATHAM J A novel thermo-mechanical coupling approach for thermal fracturing of rocks in the three-dimensional FDEM[J]. Computational Particle Mechanics, 2020, 7: 935- 946
doi: 10.1007/s40571-020-00319-4
[24]
SILVA G S D, KOSTESKI L E, ITURRIOZ I Analysis of the failure process by using the lattice discrete element method in the Abaqus environment[J]. Theoretical and Applied Fracture Mechanics, 2020, 107: 102563
doi: 10.1016/j.tafmec.2020.102563
[25]
HRENNIKOFF A Solution of problems of elasticity by the framework method[J]. Journal of Applied Mechanics, 1941, 8 (4): A169- A175
doi: 10.1115/1.4009129
[26]
NAYFEH A H, HEFZY M S Continuum modeling of three-dimensional truss-like space structures[J]. AIAA Journal, 1978, 16 (8): 779- 787
doi: 10.2514/3.7581
[27]
ITURRIOZ I, RIERA J D, MIGUEL L F F Introduction of imperfections in the cubic mesh of the truss-like discrete element method[J]. Fatigue and Fracture of Engineering Materials and Structures, 2014, 37 (5): 539- 552
[28]
KOSTESKI L E, RIERA J D, ITURRIOZ I, et al Analysis of reinforced concrete plates subjected to impact employing the truss-like discrete element method[J]. Fatigue and Fracture of Engineering Materials and Structures, 2015, 38 (3): 276- 289
doi: 10.1111/ffe.12227
[29]
ITURRIOZ I, FADEL M, LETÍCIA F, et al Dynamic fracture analysis of concrete or rock plates by means of the discrete element method[J]. Latin American Journal of Solids and Structures, 2009, 6 (3): 229- 245
[30]
COLPO A B, KOSTESKI L E, ITURRIOZ I The size effect in quasi-brittle materials: experimental and numerical analysis[J]. International Journal of Damage Mechanics, 2017, 26 (3): 395- 416
doi: 10.1177/1056789516671776
[31]
GRASSL P A lattice approach to model flow in cracked concrete[J]. Cement and Concrete Composites, 2009, 31 (7): 454- 460
[32]
WANG X Y, ZHANG L N Simulation of chloride diffusion in cracked concrete with different crack patterns[J]. Advances in Materials Science and Engineering, 2016, 2016: 1075452
[33]
WANG L, SODA M, UEDA T Simulation of chloride diffusivity for cracked concrete based on RBSM and truss network model[J]. Journal of Advanced Concrete Technology, 2008, 6 (1): 143- 155
doi: 10.3151/jact.6.143
[34]
吴迪. 早龄期混凝土热力学性能的细观数值模拟[D]. 大连: 大连理工大学, 2018: 26-45. WU Di. Numerical simulation on the thermodynamic performance of early-age concrete by mesoscale method[D]. Dalian: Dalian University of Technology, 2018: 26-45.
[35]
ZHANG H, XU Y, GAN Y, et al Experimentally validated meso-scale fracture modelling of mortar using output from micromechanical models[J]. Cement and Concrete Composites, 2020, 110: 103567
doi: 10.1016/j.cemconcomp.2020.103567
[36]
ABDALLA H Concrete cover requirements for FRP reinforced members in hot climates[J]. Composite Structures, 2005, 73 (1): 61- 69
[37]
JANSEN D P, CARLSON S R, YOUNG R P, et al Ultrasonic imaging and acoustic emission monitoring of thermally induced microcracks in Lac du Bonnet granite[J]. Journal of Geophysical Research, 1993, 98 (B12): 22231- 22243
doi: 10.1029/93JB01816
[38]
ZHAO Z Thermal influence on mechanical properties of granite: a microcracking perspective[J]. Rock Mechanics and Rock Engineering, 2016, 49 (3): 747- 762
doi: 10.1007/s00603-015-0767-1
[39]
卢春鹏, 刘杏红, 赵志方, 等 热膨胀系数时变性对混凝土温度应力仿真影响[J]. 浙江大学学报:工学版, 2019, 53 (2): 284- 291 LU Chun-peng, LIU Xing-hong, ZHAO Zhi-fang, et al Effect of time-varying thermal expansion coefficient on thermal stress simulation of concrete[J]. Journal of Zhejiang University:Engineering Science, 2019, 53 (2): 284- 291
[40]
胡倩筠, 常晓林, 冯楚桥, 等 基于性能演变理论的混凝土细观损伤特性研究[J]. 浙江大学学报:工学版, 2018, 52 (8): 1596- 1604 HU Qian-yun, CHANG Xiao-ling, FENG Chu-qiao, et al Study of meso-damage characteristics of concrete based on properties evolution theory[J]. Journal of Zhejiang University:Engineering Science, 2018, 52 (8): 1596- 1604