Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (2): 367-379    DOI: 10.3785/j.issn.1008-973X.2023.02.016
    
Permeability analysis of glazed hollow beads insulation concrete based on thermal crack evolution
Ming-hou LI1(),Nina SELYUTINA2,Ivan SMIRNOV2,Xiang ZHANG1,Bei-bei LI1,Yuan-zhen LIU1,Yu ZHANG1,*()
1. College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2. Saint Petersburg State University, St. Petersburg 199034, Russia
Download: HTML     PDF(3778KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The high thermal stability of glazed hollow bead (GHB) was used to improve the high temperature resistance of concrete, in order to improve the durability degradation of concrete structures after fire. The anti-chloride ion penetration of glazed hollow beads insulation concrete (GIC) exposed to high temperature was tested through the electric flux method. Meanwhile, combined with the thermal crack evolution characteristics, the deterioration law of its resistance to chloride ion corrosion was analyzed. Results showed that the application of GHB significantly improved the degradation of the chloride ion penetration resistance of concrete after high temperature exposure. Compared with normal concrete (NC) and silica fume concrete (SFC) of the same strength grade, the electric flux of concrete with GHB after high temperature exposure was reduced by about 54.15% and 32.69%, respectively. Combined with the thermal cracks evolution characteristic of concrete, it was believed that this was attributed to the strengthening effect of GHB and silica fume on the compactness of concrete, and the positive contribution of GHB to thermal damage resistance of concrete. On this basis, the influences of thermal crack evolution, GHB and silica fume, were further considered, and a prediction model of chloride ion permeability in high temperature environment was finally established.



Key wordsglazed hollow bead      concrete      chloride ion corrosion      thermal crack      predictive model     
Received: 01 June 2022      Published: 28 February 2023
CLC:  TB 332  
  TU 528  
Fund:  国家自然科学基金国际合作与交流项目(52111530039);Russian Foundation for Basic Research (21-51-53008);住房和城乡建设部科技计划资助项目(2021-K-046);山西省研究生教育创新资助项目(2021Y234)
Corresponding Authors: Yu ZHANG     E-mail: liminghou0648@link.tyut.edu.cn;zhangyu03@tyut.edu.cn
Cite this article:

Ming-hou LI,Nina SELYUTINA,Ivan SMIRNOV,Xiang ZHANG,Bei-bei LI,Yuan-zhen LIU,Yu ZHANG. Permeability analysis of glazed hollow beads insulation concrete based on thermal crack evolution. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 367-379.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.02.016     OR     https://www.zjujournals.com/eng/Y2023/V57/I2/367


基于热裂纹演化的玻化微珠保温混凝土渗透性能分析

为了改善火灾后混凝土结构耐久性退化问题,利用玻化微珠(GHB)的高热稳定性对混凝土耐高温性能进行提升,通过电通量法对高温后玻化微珠保温混凝土(GIC)的抗氯离子侵蚀性能进行测试,并结合混凝土试件热裂纹演化特征对其抗氯离子侵蚀性能劣化规律进行分析. 结果表明:GHB的掺加显著改善了高温后混凝土抗氯离子渗透能力退化问题,与同强度等级的普通混凝土(NC)和硅灰混凝土(SFC)相比,掺加GHB后混凝土的电通量分别降低了约54.15%、32.69%. 结合各试件热裂纹演化规律,认为这归因于GHB和硅灰对混凝土密实性的提高,以及GHB对混凝土抗高温损伤造成的积极影响. 在此基础上,通过考虑热裂纹演化特征、GHB和硅灰的影响,建立了高温环境氯离子渗透性预测模型.


关键词: 玻化微珠,  混凝土,  氯离子侵蚀,  热裂纹,  预测模型 
胶凝材料 $ \rho $/(g·cm?3) $ {a_{\text{s}}} $/(m2·kg?1) $ {H_{7{\text{d}}}} $/% $ {R_{\text{c}}} $/MPa
水泥 3.09 318 ? 48.3
硅灰 2.35 15400 112 ?
Tab.1 Basic properties of cementitious materials
骨料 $ {\rho _{\text{L}}} $/(g·cm?3) $ {\delta _{\text{j}}} $/% ${w_{\text{c} } }$/% $ {\delta _{\text{a}}} $/% ${w _{ {\text{wa,24h} } } }$/% ${w _{ {\text{cl} } } }$/%
1.48 6.2 0.65 18 3.70 0.016
碎石 1.45 4.7 0.47 8.9 1.10 ?
Tab.2 Properties of aggregates
Fig.1 Morphology of glazed hollow beads
材料 $ {\rho _{\text{L}}} $/
(kg·m?3)
p/
kPa
$ \lambda $/
(W·m?1·K?1)
${w _{ {\text{wa,24h} } } }$/
%
${w _{\text{1} } }$/
%
${w_{\text{2} } }$/
%
GHB 130 209 0.0412 207 92 96
Tab.3 Material properties of glazed hollow beads
混凝土
编号
$ {m_{\text{g}}} $/
kg
$ {m_{\text{s}}} $/
kg
$ {m_{\text{c}}} $/
kg
$ {m_{{\text{GHB}}}} $/
kg
${w _{ {\text{SF} } } }$/
%
${w _{\text{a} } }$/
%
$ w/c $ $ {f_{{\text{cu,28d}}}} $/
MPa
评级
等级
GIC 1033 580 458 132 6.9 2.50 0.40 55.78 C55
SFC 1070 730 447 0 6.9 0.26 0.36 58.03 C55
NC 1202 515 488 0 0 0.10 0.36 56.94 C55
Tab.4 Mixture proportions of concretes
Fig.2 Electric flux test device
Fig.3 Calculation of chloride ion penetration depth
Fig.4 Mass loss rate of specimens after high temperature
Fig.5 High temperature damage phenomenon
Fig.6 Penetration depth of chloride ion in concrete after high temperature
Fig.7 Effect of temperature on concrete electric flux
θ/℃ GIC SFC NC
$ Q $/C 渗透
等级
$ Q $/C 渗透
等级
$ Q $/C 渗透
等级
20 97 可忽略 224 非常低 600 非常低
100 104 非常低 346 非常低 1867
200 1221 2148 中等 3506 中等
300 2773 中等 3078 中等 4372
400 3579 中等 3957 中等 4843
≥500 4103 4410 5055
Tab.5 Specimen penetration grade classification
$ \theta $/℃ $ D $/(10?11 m2·s)
${w _{ {\text{PF} } } }$=0 ${w _{ {\text{PF} } } }$=0.6 ${w _{ {\text{PF} } } }$=1.2 ${w _{ {\text{PF} } } }$=1.8
400 2.35 2.41 2.38 3.65
600 7.30 7.33 7.31 7.38
Tab.6 Chloride diffusion coefficient of polypropylene fiber concrete after high temperature exposure [25]
Fig.8 Compressive strength of aerated concrete and normal concrete at different temperatures [13]
Fig.9 Extraction method of thermally induced cracks on concrete specimens
Fig.10 Thermal induced crack evolution of concrete specimens
Fig.11 Variation characteristics of specific crack length and crack fraction with temperature
Fig.12 Relationship between specific crack length, crack fraction and temperature
Fig.13 Correlation characteristics between high temperature deterioration coefficient and permeability
Fig.14 Deterioration mechanism of concrete permeability after high temperature exposure
Fig.15 Variation characteristics of GHB and SF influencing factors with temperature
Fig.16 Pore size distribution curves of samples after exposure to high temperature
$ \theta $/℃ NC SFC GIC
${Q_{\rm{e}}}$/C $ {Q_{\text{p}}} $/C ${\varDelta }$/% ${Q_{\rm{e}}}$/C $ {Q_{\text{p}}} $/C ${\varDelta }$/% ${Q_{\rm{e}}}$/C $ {Q_{\text{p}}} $/C ${\varDelta}$/%
20 600 1092 82.18 224 285 26.81 97 105 7.28
100 1867 1092 41.49 346 393 13.52 104 144 38.89
200 3506 3425 2.31 2148 1812 15.62 1221 1029 15.68
300 4372 4487 2.62 3078 3220 4.61 2773 2905 4.75
400 4843 4903 1.24 3957 4069 2.82 3579 3729 4.19
500 5055 5034 0.42 4410 4337 1.66 4103 3978 3.05
Tab.7 Comparison between calculated value and predicted value of electric flux
[1]   HAY R, DUNG N T, LESIMPLE A, et al Mechanical and microstructural changes in reactive magnesium oxide cement-based concrete mixes subjected to high temperatures[J]. Cement and Concrete Composites, 2021, 118: 103955
doi: 10.1016/j.cemconcomp.2021.103955
[2]   SHUMUYE E D, ZHAO J, WANG Z Effect of fire exposure on physico-mechanical and microstructural properties of concrete containing high volume slag cement[J]. Construction and Building Materials, 2019, 213: 447- 458
doi: 10.1016/j.conbuildmat.2019.04.079
[3]   HERTZ K D Limits of spalling of fire-exposed concrete[J]. Fire Safety Journal, 2003, 38 (2): 103- 116
doi: 10.1016/S0379-7112(02)00051-6
[4]   JIN H, LIU J, JIANG Z, et al Influence of the rainfall intensity on the chloride ion distribution in concrete with different levels of initial water saturation[J]. Construction and Building Materials, 2021, 281: 122561
doi: 10.1016/j.conbuildmat.2021.122561
[5]   王海龙, 俞秋佳, 孙晓燕, 等 高温作用后混凝土损伤与耐久性能评价[J]. 江苏大学学报:自然科学版, 2014, 35 (2): 238- 242
WANG Hai-long, YU Qiu-jia, SUN Xiao-yan, et al Durability and damage evaluation of concrete subjected to high temperature[J]. Journal of Jiangsu University: Natural Science Edition, 2014, 35 (2): 238- 242
[6]   姜福香, 于奎峰, 赵铁军, 等 高温后混凝土耐久性能试验研究[J]. 四川建筑科学研究, 2010, 36 (2): 32- 34
JIANG Fu-xiang, YU Kui-feng, ZHAO Tie-jun, et al Experimental study on durability of concrete after exposure to high temperature[J]. Sichuan Building Science, 2010, 36 (2): 32- 34
doi: 10.3969/j.issn.1008-1933.2010.02.008
[7]   PERSSON B Fire resistance of self-compacting concrete, SCC[J]. Materials and Structures, 2004, 37 (9): 575- 584
doi: 10.1007/BF02483286
[8]   HEZHEV T A, ZHURTOV A V, TSIPINOV A S, et al Fire resistant fibre reinforced vermiculite concrete with volcanic application[J]. Magazine of Civil Engineering, 2018, 4 (80): 181- 194
[9]   MOHAMMADHOSSEINI H, ALRSHOUDI F, TAHIR M M, et al Performance evaluation of novel prepacked aggregate concrete reinforced with waste polypropylene fibers at elevated temperatures[J]. Construction and Building Materials, 2020, 259: 120418
doi: 10.1016/j.conbuildmat.2020.120418
[10]   NARAYANAN N, RAMAMURTHY K Structure and properties of aerated concrete: a review[J]. Cement and Concrete Composites, 2000, 22 (5): 321- 329
doi: 10.1016/S0958-9465(00)00016-0
[11]   SANCAK E, SARI Y D, SIMSEK O Effects of elevated temperature on compressive strength and weight loss of the light-weight concrete with silica fume and superplasticizer[J]. Cement and Concrete Composites, 2008, 30 (8): 715- 721
doi: 10.1016/j.cemconcomp.2008.01.004
[12]   张文潇. 纤维素纤维混凝土耐久性、高温抗爆裂及徐变特性[D]. 南京: 东南大学, 2015.
ZHANG Wen-xiao. Durability, resistance to spalling after high temperature and creep characteristics of cellulose fiber reinforced concrete[D]. Nanjing: Southeast University, 2015.
[13]   HOLAN J, NOVAK J, MULLER P, et al Experimental investigation of the compressive strength of normal-strength air-entrained concrete at high temperatures[J]. Construction and Building Materials, 2020, 248: 118662
doi: 10.1016/j.conbuildmat.2020.118662
[14]   孙华琦, 徐博, 元成方 高温作用后聚丙烯纤维混凝土氯离子渗透性能研究[J]. 混凝土, 2016, (6): 31- 34
SUN Hua-qi, XU Bo, YUAN Cheng-fang Research on chloride ion permeability of polypropylene fiber reinforced concrete after high temperature[J]. Concrete, 2016, (6): 31- 34
doi: 10.3969/j.issn.1002-3550.2016.06.009
[15]   LI B, ZHANG Y, SELYUTINA N, et al Thermally-induced mechanical degradation analysis of recycled aggregate concrete mixed with glazed hollow beads[J]. Construction and Building Materials, 2021, 301: 124350
doi: 10.1016/j.conbuildmat.2021.124350
[16]   DU S, ZHANG Y, ZHANG J, et al Study on pore characteristics of recycled aggregate concrete mixed with glazed hollow beads at high temperatures based on 3-D reconstruction of computed tomography images[J]. Construction and Building Materials, 2022, 323: 126564
doi: 10.1016/j.conbuildmat.2022.126564
[17]   中国国家标准化管理委员会. 通用硅酸盐水泥: GB 175-2007[S]. 北京: 中国标准出版社, 2007.
[18]   中国国家标准化管理委员会. 砂浆和混凝土用硅灰: GB/T 27690-2011[S]. 北京: 中国标准出版社, 2011.
[19]   中国国家标准化管理委员会. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082-2009[S]. 北京: 中国标准出版社, 2009.
[20]   ASTM Committee on Standards. Standard test method for electrical indication of concrete ability to resist chloride ion penetration: ASTM C1202[S]. West Conshohocken: ASTM International, 1994.
[21]   FLORES-ALES V, ALDUCIN-OCHOA J M, MARTIN-DEL-RIO J J, et al Physical-mechanical behaviour and transformations at high temperature in a cement mortar with waste glass as aggregate[J]. Journal of Building Engineering, 2020, 29: 101158
doi: 10.1016/j.jobe.2019.101158
[22]   朋改非, 王金羽, CHAN YIN NIN SAMMY, 等 火灾高温下硬化水泥浆的化学分解特征[J]. 南京信息工程大学学报, 2009, 1 (1): 76- 81
PENG Gai-fei, WANG Jin-yu, CHAN Y N S, et al Chemical decomposition characteristics of hardened cement paste subjected to high temperature of fire[J]. Journal of Nanjing University of Information Science and Technology, 2009, 1 (1): 76- 81
doi: 10.3969/j.issn.1674-7070.2009.01.012
[23]   FLORES-ALES V, MARTIN-DEL-RIO J J, ALDUCIN-OCHOA J M, et al Rehydration on high temperature-mortars based on recycled glass as aggregate[J]. Journal of Cleaner Production, 2020, 275: 124139
doi: 10.1016/j.jclepro.2020.124139
[24]   AL-ZAHRANI M M, AL-DULAIJAN S U, IBRAHIM M, et al Effect of waterproofing coatings on steel reinforcement corrosion and physical properties of concrete[J]. Cement and Concrete Composites, 2002, 24 (1): 127- 137
doi: 10.1016/S0958-9465(01)00033-6
[25]   王静. 聚丙烯纤维混凝土高温性能与高温后氯离子扩散性能试验研究[D]. 郑州: 郑州大学, 2014.
WANG Jing. Experimental study on chloride ion erosion of polypropylene-fiber concrete subjected to high temperature[D]. Zhengzhou: Zhengzhou University, 2014.
[26]   杨钱荣 混凝土渗透性及引气作用对耐久性的影响[J]. 同济大学学报: 自然科学版, 2009, 37 (6): 744- 748
YANG Qian-rong Effect of permeability of concrete and air entrainment on durability of concrete[J]. Journal of Tongji University: Natural Science, 2009, 37 (6): 744- 748
[27]   ZHOU C, LI K, PANG X Geometry of crack network and its impact on transport properties of concrete[J]. Cement and Concrete Research, 2012, 42 (9): 1261- 1272
doi: 10.1016/j.cemconres.2012.05.017
[28]   LITOROWICZ A Identification and quantification of cracks in concrete by optical fluorescent microscopy[J]. Cement and Concrete Research, 2006, 36 (8): 1508- 1515
doi: 10.1016/j.cemconres.2006.05.011
[29]   LI Y. Material properties and explosive spalling of ultra-high performance concrete in fire[D]. Singapore: Nanyang Technological University, 2018.
[30]   KALIFA P, MENNETEAU F D, QUENARD D Spalling and pore pressure in HPC at high temperatures[J]. Cement and Concrete Research, 2000, 30 (12): 1915- 1927
doi: 10.1016/S0008-8846(00)00384-7
[31]   BAIANT Z P. Analysis of pore pressure, thermal stress and fracture in rapidly heated concrete [C]// International Workshop on Fire Performance of High-strength Concrete, NIST. Gaithersburg: [s.n.], 1997: 155-164.
[32]   DOUSTI A, RASHETNIA R, AHMADI B, et al Influence of exposure temperature on chloride diffusion in concretes incorporating silica fume or natural zeolite[J]. Construction and Building Materials, 2013, 49: 393- 399
doi: 10.1016/j.conbuildmat.2013.08.086
[33]   ZHAO L, WANG W, LI Z, et al Microstructure and pore fractal dimensions of recycled thermal insulation concrete[J]. Materials Testing, 2015, 57 (4): 349- 359
doi: 10.3139/120.110713
[34]   罗盛. 玻化微珠保温混凝土晋城凤凰城19#楼项目配合比试验及耐久性的研究[D]. 太原: 太原理工大学, 2012.
LUO Sheng. Research on mix ratio test and durability of thermal insulation glazed hollow bead concrete for Jingcheng phoenix town 19# project[D]. Taiyuan: Taiyuan University of Technology, 2012.
[1] Li-zhao DAI,Wei CAO,Shan-chang YI,Lei WANG. Damage identification of concrete structure based on WPT-SVD and GA-BPNN[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 100-110.
[2] Hai-bo LU,Guang-tai ZHANG,Shi-tuo LIU,Xue-fan LI,Xia HAN. Seismic behavior of polypropylene fiber concrete column in saline soil environment[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 111-121.
[3] Min ZHANG,Ming-ke DENG,Ao-long ZHI,Shi-fei SONG,Hui CHEN. Flexural behavior of RC beams strengthened by textile-reinforced highly ductile concrete[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1693-1703.
[4] Guo-peng LYU,Nan JIANG,Chuan-bo ZHOU,Hai-bo LI,Ying-kang YAO,Xu ZHANG. Surface explosion induced crack extension mechanism of reinforced concrete pipeline[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1704-1713.
[5] Ling-xiao CHEN,Wen-xiang TIAN,Gang MA,Yong-gang CHENG,Qiao WANG,Wei ZHOU. Thermal-mechanical coupled lattice discrete element method for simulating thermal cracking of quasi-brittle materials[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1750-1760.
[6] Xiao-qing LIN,Yu-xuan YING,Hong YU,Xiao-dong LI,Jian-hua YAN. Calculation and prediction of flue gas residence time from CFB municipal solid waste incinerator[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1578-1587.
[7] Yi-wen HUANG,Nan JIANG,Chuan-bo ZHOU,Hai-bo LI,Xue-dong LUO,Ying-kang YAO. Dynamic failure mechanism of concrete pipeline with corroded inner-wall subjected to blasting[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1342-1352.
[8] Peng GAO,Xue-bo ZENG,Yi-long WU,Fei PENG. Axial compression bearing capacity of steel reinforced concrete rectangular columns confined by carbon fiber reinforced polymer[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 890-900, 908.
[9] Zhi-yuan MA,Jiang LIU,Yong-jian LIU,Yi LYU,Guo-jing ZHANG. Regional difference of value taking of effective temperature for steel-concrete composite girder bridges[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 909-919.
[10] Wei TIAN,Fang-fang GAO,Li HE. Variation of mechanical property and meso structure of MWCNTs concrete exposed to high temperature[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2280-2289.
[11] Ming-ke DENG,Meng-na JIN,Li-ying GUO,Fu-dong MA,Hua-zheng LIU. Experimental study on seismic performance of ultra-high performance concrete connected precast columns[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 1995-2006.
[12] Yong-xiao DU,Jun WEI,Xiao-li SUN. Fatigue evolution of natural frequency for prestressed concrete beam[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2007-2018.
[13] Chao ZHANG,Zheng-dong HUANG,Zhong-ming XIONG,Xiao-lu YUAN,You-jun XU,Jia-wang KANG. Seismic response of reinforced concrete frame structure in ground fissures area[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2028-2036.
[14] Sheng-tao XIANG,Da WANG. Model interactive modification method based on improved quantum genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 100-110.
[15] Xing-bo HAN,Fei YE,Xiao-ming LIANG,Hao-lan FENG,Lei WANG,Yong-xu XIA. Carbonation resistance zonation of reinforced concrete lining of road tunnels[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1436-1443.