|
|
Calculation and prediction of flue gas residence time from CFB municipal solid waste incinerator |
Xiao-qing LIN1( ),Yu-xuan YING1,Hong YU2,Xiao-dong LI1,*( ),Jian-hua YAN1 |
1. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China 2. Fuchunjiang Environmental Technology Research Co. Ltd, Hangzhou 311504, China |
|
|
Abstract Ensuring that the flue gas in the furnace stays within the temperature range of no less than 850 ℃ for at least 2 s contributes to the steady municipal solid waste (MSW) incineration, and the reduction of secondary pollution. However, at present, it is difficult to quantitatively calculate and predict the residence time of flue gas in the high temperature area by only using the thermocouple for qualitative evaluation. Based on the thermodynamic calculation, correlation analysis of practical operation parameters, and a variety of machine learning algorithms (backpropagation neural network, recurrent neural network, and random forest regression), the residence time of flue gas in high-temperature areas (>850 ℃) was calculated, correlation analysis of key operation parameters was conducted, and the prediction model of residence time was constructed, aiming at a typical MSW circulating fluidized bed boiler in China. Results revealed that 10 key operating parameters, e.g. section temperature of the furnace, temperature and pressure of primary air and secondary air, etc., had a strong correlation and predictability with the high-temperature flue gas residence time. Moreover, the model of the recurrent neural network was relatively optimal, with a higher fitting degree and accuracy. Specifically, the mean square error (MSE) was 0.11626, and the average absolute error between the predicted value and real value was 1.174%. Research enabled the prediction of flue gas temperature variation in high-temperature areas, helped optimize the MSW incineration, and contributed to the advanced control of pollutant emission reduction.
|
Received: 11 August 2021
Published: 30 August 2022
|
|
Fund: 国家重点研发计划资助项目(2020YFC1910100). |
Corresponding Authors:
Xiao-dong LI
E-mail: linxiaoqing@zju.edu.cn;lixd@zju.edu.cn
|
流化床垃圾焚烧炉烟气停留时间计算及预测
保证焚烧烟气在大于850 ℃区域内停留2 s以上是保证垃圾稳定燃烧和避免二次污染的重要途径,但目前只采用炉膛出口热电偶测温对其定性评估,难以定量计算和预测烟气在高温区域停留时间. 本研究基于热力学计算方法、运行参数关联性分析和多种机器学习算法(反向传播神经网络、循环神经网络、随机森林算法),对我国某典型生活垃圾循环流化床焚烧锅炉开展了烟气高温段(>850 ℃)停留时间计算、关键运行参数关联计算和停留时间预测模型构建等研究. 结果表明,炉膛温度、一二次风温度和压力等10个关键运行参数与高温烟气停留时间具有强关联性和预测性. 循环神经网络预测模型相对最优,其拟合度及准确性较反向神经网络、随机森林算法更高,均方根误差(MSE)为0.11626,预测值与真实值的平均绝对误差为1.174%. 本研究可以用于预测炉内高温区域烟气温度变化,为炉内焚烧工况优化和污染物减排超前调控提供支撑.
关键词:
城市生活垃圾,
焚烧,
高温烟气,
停留时间,
预测模型
|
|
[1] |
中国统计年鉴[M]. 北京: 中华人民共和国国家统计局, 2020.
|
|
|
[2] |
NIE Y Development and prospects of municipal solid waste (MSW) incineration in China[J]. Frontiers of Environmental Science Engineering in China, 2008, 2 (1): 1- 7
doi: 10.1007/s11783-008-0028-6
|
|
|
[3] |
张梦玫. 典型过渡金属化合物对二恶英异相催化生成影响及作用机理的研究 [D]. 杭州: 浙江大学, 2019. ZHANG Meng-mei. Research on effect and reaction mechanisms of typical transition metal compounds on heterogeneous catalytic formation of dioxins [D]. Hangzhou: Zhejiang University, 2019.
|
|
|
[4] |
应雨轩, 林晓青, 吴昂键, 等 生活垃圾智慧焚烧的研究现状及展望[J]. 化工学报, 2021, 72 (2): 886- 900 YING Yu-xuan, LIN Xiao-qing, WU Ang-jian, et al Review and outlook on municipal solid waste smart incineration[J]. Journal of Chemical Industry and Engineering, 2021, 72 (2): 886- 900
|
|
|
[5] |
GUO X, MA Y, LIN X, et al Reduction of polychlorinated dibenzo-p-dioxins and dibenzofurans by chemical inhibition and physisorption from a municipal solid waste incineration system[J]. Energy and Fuels, 2020, 34 (9): 11237- 47
doi: 10.1021/acs.energyfuels.0c01918
|
|
|
[6] |
MA Y, LIN X, CHEN Z, et al Influences of PN-containing inhibitor and memory effect on PCDD/F emissions during the full-scale municipal solid waste incineration[J]. Chemosphere, 2019, 228: 495- 502
doi: 10.1016/j.chemosphere.2019.04.161
|
|
|
[7] |
RYU J, MULHOLLAND J, DUNN J, et al Potential role of chlorination pathways in PCDD/F formation in a municipal waste incinerator[J]. Environmental Science Technology, 2004, 38 (19): 5112- 9
doi: 10.1021/es0497227
|
|
|
[8] |
STANMORE B Modeling the formation of PCDD/F in solid waste incinerators[J]. Chemosphere, 2002, 47 (6): 565- 73
doi: 10.1016/S0045-6535(02)00005-X
|
|
|
[9] |
侯霞丽, 李晓东, 陈彤, 等 垃圾焚烧飞灰中主要元素的深度分布及形态[J]. 浙江大学学报:工学版, 2015, 47 (6): 565- 73 HOU Xia-li, LI Xiao-dong, CHEN Tong, et al Distribution and chemical forms of major elements in MSWI fly ash[J]. Journal of Zhejiang University: Engineering Science, 2015, 47 (6): 565- 73
|
|
|
[10] |
HUTZINGER O, BLUMICH M, BERG M, et al Sources and fate of PCDDs and PCDFs: an overview[J]. Chemosphere, 1985, 14 (6/7): 581- 600
|
|
|
[11] |
LIN X, MA Y, CHEN Z, et al Effect of different air pollution control devices on the gas/solid-phase distribution of PCDD/F in a full-scale municipal solid waste incinerator[J]. Environmental Pollution, 2020, 265: 114888
doi: 10.1016/j.envpol.2020.114888
|
|
|
[12] |
MA Y, LIN X, CHEN Z, et al Influence factors and mass balance of memory effect on PCDD/F emissions from the full-scale municipal solid waste incineration in China[J]. Chemosphere, 2020, 239: 124614
doi: 10.1016/j.chemosphere.2019.124614
|
|
|
[13] |
环境保护部. 生活垃圾焚烧污染控制标准: GB 18485—2014 [S]. 北京: 中国环境科学出版社, 2014.
|
|
|
[14] |
LIN X, YAN M, DAI A, et al Simultaneous suppression of PCDD/F and NOx during municipal solid waste incineration[J]. Chemosphere, 2015, 126: 60- 6
doi: 10.1016/j.chemosphere.2015.02.005
|
|
|
[15] |
孙小燕, 韩志明, 焦学军 垃圾焚烧炉膛烟气温度计算模型的探讨: 满足烟气850 ℃以上停留2 s的监管要求[J]. 环境卫生工程, 2020, 28 (5): 48- 53 SUN Xiao-yan, HAN Zhi-ming, JIAO Xue-jun Discussion on the calculation model of flue gas temperature in waste incineration furnace: meet the supervision requirements that the flue gas Stays Above 850 ℃ for 2 s[J]. Environmental Sanitation Engineering, 2020, 28 (5): 48- 53
|
|
|
[16] |
白良成, 徐文龙 层燃型垃圾焚烧锅炉的炉膛与炉膛温度简析[J]. 环境卫生工程, 2021, 29 (1): 58- 63 BAI Liang-cheng, XU Wen-long Brief analysis of furnace and furnace temperature of layer burning waste incineration boiler[J]. Environmental Sanitation Engineering, 2021, 29 (1): 58- 63
doi: 10.19841/j.cnki.hjwsgc.2021.01.009
|
|
|
[17] |
WANG L, HSI H, CHANG J, et al Influence of start-up on PCDD/F emission of incinerators[J]. Chemosphere, 2007, 67 (7): 1346- 53
doi: 10.1016/j.chemosphere.2006.10.081
|
|
|
[18] |
胡南, 徐梦, 杨海瑞, 等 循环流化床锅炉炉膛横向 温度非均匀性模型研究[J]. 洁净煤技术, 2019, 25 (2): 102- 107 HU Nan, XU Meng, YANG Hai-rui, et al Modeling study on lateral temperature non-uniformity in CFB boiler furnace[J]. Clean Coal Technology, 2019, 25 (2): 102- 107
|
|
|
[19] |
帅志昂. 660MW循环流化床锅炉流动和燃烧特性的数值模拟[D]. 北京: 华北电力大学(北京), 2017. Shuai Zhi-ang. Numerical simulation of the flow and combustion characteristics of the 660 MW circulating fluidized bed[D]. Beijing: School of North China Electric Power University, 2017.
|
|
|
[20] |
WANG S. Artificial neural network [M]. Interdisciplinary computing in java programming. Triumf: Springer, 2003: 81-100.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|