Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (7): 1539-1546    DOI: 10.3785/j.issn.1008-973X.2025.07.022
    
Flow and heat transfer characteristics of slot-jet microchannel heat sinks
Zhuoran WANG(),Zhijian SUN*(),Zitao YU
Institute of Thermal Science and Power Systems, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(2349KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The microchannel rib structure was optimized to improve thermal performance, temperature uniformity, and flow field homogeneity. The realizable k-ε turbulence model was employed to compare and discuss the cooling performance of a fully enclosed channel and four non-enclosed channels with varying fin heights. Model accuracy was validated experimentally. Results showed that adopting non-enclosed configurations effectively improved flow field homogeneity, resulting in a uniform velocity distribution. An optimal fin height was identified during the transition from the enclosed channel to decreasing fin heights, maximizing both the temperature uniformity and thermal performance of the heat sink. Under identical conditions, among the five configurations studied, the microchannel heat sink with a fin height of 1.8 mm exhibited the best thermal and temperature uniformity performance. Compared to the enclosed channel design, the average temperature was reduced by 4.22% and the maximum temperature difference was reduced by 7.4%. Compared to the design with a fin height of 1.2 mm, the average temperature was reduced by 14.95% and the maximum temperature difference was reduced by 15.43%.



Key wordsmicrochannel heat sink      slot jet      temperature uniformity      thermal performance      enhanced heat transfer      numerical simulation     
Received: 07 May 2024      Published: 25 July 2025
CLC:  TK 124  
Corresponding Authors: Zhijian SUN     E-mail: 22227033@zju.edu.cn;zjsun@zju.edu.cn
Cite this article:

Zhuoran WANG,Zhijian SUN,Zitao YU. Flow and heat transfer characteristics of slot-jet microchannel heat sinks. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1539-1546.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.07.022     OR     https://www.zjujournals.com/eng/Y2025/V59/I7/1539


狭缝喷射微通道散热器的流动传热特性

优化微通道肋片结构,提高散热器的散热性、均温性并改善流场均匀性. 利用可实现的k-ε湍流模型,比较并讨论封闭通道与4组非封闭不同肋高通道的冷却性能,通过实验验证模型准确性. 研究结果表明:采用非封闭结构能够有效改善流场均匀性,使流场速度分布均匀;当通道由封闭式向肋高逐渐降低的非封闭式转变时,存在肋高最优值,使散热器的均温性能和散热性能达到最优. 在相同条件下,5组模型中肋高为1.8 mm的微通道散热器的散热性能和均温性能最佳,与封闭式通道相比,平均温度降低了4.22%,最大温差降低了7.4%;与肋高为1.2 mm的非封闭式通道相比,平均温度降低了14.95%,最大温差降低了15.43%.


关键词: 微通道散热器,  狭缝射流,  均温性,  散热性能,  强化传热,  数值模拟 
Fig.1 Schematic diagram of microchannel heat sink
参数数值参数数值
散热器长度L/mm30.00上盖板厚度ht/mm1.00
散热器宽度W/mm30.0底部壁厚hd/mm1.00
狭缝长度Lin/mm2.00肋片宽度wf/mm0.50
狭缝宽度Win/mm28.50通道宽度wg/mm0.50
壁面厚度ww/mm0.75
Tab.1 Geometric dimensions of microchannel heat sink
Fig.2 Grid independence test
Fig.3 Heat transfer performance test bench
设备名称型号工作参数精度
稳压直流电源RXN-605D输出电压0~60 V,
输出电流0~5 A
电压± 0.1 V,
电流± 0.01 A
恒温水浴箱AD07R-205~100 ℃± 0.01 ℃
数据采集仪34970A采集频率0.1 Hz
热电偶OMEGA T?200~150 ℃± 0.1 ℃
流量计LZB-6WB60~600 mL/min± 15 mL/min
Tab.2 Main equipment parameters of heat transfer performance test bench
Fig.4 Heat sink and measurement point distribution
Fig.5 Heating module for heat sink
Fig.6 Temperature comparison between experimental and modeled results for different heating powers and flow rates
Fig.7 Heat transfer characteristics variation of models with different fin heights under different pump powers
hf/mmtavg/℃ΔTh/KR/(K·W?1
2.041.9413.670.035 7
1.841.0112.660.034 5
1.641.9513.110.036 9
1.443.2413.930.039 9
1.244.7114.970.043 1
Tab.3 Average temperature, maximum temperature difference, and thermal resistance for models with different fin heights
Fig.8 Temperature distribution of models with different fin heights
Fig.9 Study on flow characteristics of models with different fin heights under different pump powers
Fig.10 Velocity vector map at mid-section of models with different fin heights
[1]   郭丰, 王娟, 朱沛琦 我国绿色数据中心建设工作的实践与探索[J]. 中国能源, 2020, 42 (7): 38- 41
GUO Feng, WANG Juan, ZHU Peiqi Practice and exploration of green data center construction in China[J]. Energy of China, 2020, 42 (7): 38- 41
[2]   RAHMAN M N, ESMAILPOUR A A hybrid data center architecture for big data[J]. Big Data Research, 2016, 3: 29- 40
doi: 10.1016/j.bdr.2016.02.001
[3]   王永真, 赵伟, 张靖 能源互联网下的数据中心能源供应[J]. 能源, 2020, (5): 61- 65
WANG Yongzhen, ZHAO Wei, ZHANG Jing Energy supply of data centers under the energy internet[J]. Energy, 2020, (5): 61- 65
[4]   中国通服数字基建产业研究院. 中国数据中心产业发展白皮书(2023年)[R/OL]. (2023–04–14)[2024–07–07]. https://aimg8.dlssyht.cn/u/551001/ueditor/file/276/551001/1684888884683143.pdf.
[5]   DARAGHMEH H M, WANG C C A review of current status of free cooling in datacenters[J]. Applied Thermal Engineering, 2017, 114: 1224- 1239
doi: 10.1016/j.applthermaleng.2016.10.093
[6]   骆清怡, 王长宏 数据中心多尺度热管理策略综述[J]. 制冷技术, 2021, 41 (3): 1- 11
LUO Qingyi, WANG Changhong Review of multi-scale thermal management strategy in data center[J]. Chinese Journal of Refrigeration Technology, 2021, 41 (3): 1- 11
doi: 10.3969/j.issn.2095-4468.2021.03.101
[7]   MAGHRABIE H M, OLABI A G, SAYED E T, et al Microchannel heat sinks with nanofluids for cooling electronic components: performance enhancement, challenges, and limitations[J]. Thermal Science and Engineering Progress, 2023, 37: 101608
doi: 10.1016/j.tsep.2022.101608
[8]   ZHAI Y L, XIA G D, LIU X F, et al Exergy analysis and performance evaluation of flow and heat transfer in different micro heat sinks with complex structure[J]. International Journal of Heat and Mass Transfer, 2015, 84: 293- 303
doi: 10.1016/j.ijheatmasstransfer.2015.01.039
[9]   贾玉婷, 姚森, 王景涛, 等 入口位置及角度对微通道散热器内流体流动与传热的影响[J]. 化工进展, 2021, 40 (12): 6423- 6431
JIA Yuting, YAO Sen, WANG Jingtao, et al Influence of inlet port position and angle on flow and heat transfer of microchannel heat sink[J]. Chemical Industry and Engineering Progress, 2021, 40 (12): 6423- 6431
[10]   刘泽宽. 沟槽式水冷芯片散热器的可视化研究和数值模拟 [D]. 天津: 天津商业大学, 2019: 1–58.
LIU Zekuan. Visualization and numerical simulation of grooved water-cooled chips radiator [D]. Tianjin: Tianjin University of Commerce, 2019: 1–58.
[11]   魏壮壮, 高林松, 王仁彻, 等 金属微通道热沉换热特性仿真与实验研究[J]. 真空与低温, 2020, 26 (2): 131- 138
WEI Zhuangzhuang, GAO Linsong, WANG Renche, et al Simulation and experimental research on heat transfer of metal microchannel heat-sink[J]. Vacuum and Cryogenics, 2020, 26 (2): 131- 138
doi: 10.3969/j.issn.1006-7086.2020.02.008
[12]   SUNG M K, MUDAWAR I Experimental and numerical investigation of single-phase heat transfer using a hybrid jet-impingement/micro-channel cooling scheme[J]. International Journal of Heat and Mass Transfer, 2006, 49 (3/4): 682- 694
[13]   BARRAU J, OMRI M, CHEMISANA D, et al Numerical study of a hybrid jet impingement/micro-channel cooling scheme[J]. Applied Thermal Engineering, 2012, 33: 237- 245
[14]   BARRAU J, CHEMISANA D, ROSELL J, et al An experimental study of a new hybrid jet impingement/micro-channel cooling scheme[J]. Applied Thermal Engineering, 2010, 30 (14/15): 2058- 2066
[15]   李雪强, 边雅丽, 张钟垚, 等 射流式水冷散热器关键参数对性能影响的模拟研究[J]. 制冷学报, 2021, 42 (6): 131- 139
LI Xueqiang, BIAN Yali, ZHANG Zhongyao, et al Numerical simulation of the performance of jet impingement liquid-cooling heat sink with different key parameters[J]. Journal of Refrigeration, 2021, 42 (6): 131- 139
doi: 10.3969/j.issn.0253-4339.2021.06.131
[16]   ZHANG Y, WANG S, LIU Z Effect of fluid distribution on the cooling performance of hybrid microchannel and slot-jet impingement system[J]. Applied Thermal Engineering, 2023, 222: 119913
doi: 10.1016/j.applthermaleng.2022.119913
[17]   王彬, 诸凯, 王雅博, 等 翅柱式水冷CPU芯片散热器冷却与流动性能[J]. 化工进展, 2017, 36 (6): 2031- 2037
WANG Bin, ZHU Kai, WANG Yabo, et al Experimental study on cooling and flow performance of water-cooling radiator with different pin-fins structures for CPU cooling[J]. Chemical Industry and Engineering Progress, 2017, 36 (6): 2031- 2037
[18]   BHANDARI P, PRAJAPATI Y K Thermal performance of open microchannel heat sink with variable pin fin height[J]. International Journal of Thermal Sciences, 2021, 159: 106609
doi: 10.1016/j.ijthermalsci.2020.106609
[19]   ZHANG Y, WANG S, DING P Effects of channel shape on the cooling performance of hybrid micro-channel and slot-jet module[J]. International Journal of Heat and Mass Transfer, 2017, 113: 295- 309
doi: 10.1016/j.ijheatmasstransfer.2017.05.092
[20]   GAO W, ZHANG J F, QU Z G, et al Numerical investigations of heat transfer in hybrid microchannel heat sink with multi-jet impinging and trapezoidal fins[J]. International Journal of Thermal Sciences, 2021, 164: 106902
doi: 10.1016/j.ijthermalsci.2021.106902
[21]   DU W, LUO L, WANG S, et al Numerical investigation of flow field and heat transfer characteristics in a latticework duct with jet cooling structures[J]. International Journal of Thermal Sciences, 2020, 158: 106553
doi: 10.1016/j.ijthermalsci.2020.106553
[22]   LIU M, JIANG C, KHOO B C, et al A cell-based smoothed finite element model for the analysis of turbulent flow using realizable k-ε model and mixed meshes[J]. Journal of Computational Physics, 2024, 501: 112783
doi: 10.1016/j.jcp.2024.112783
[1] Jianfei MA,Gangshuai JIA,Bo JIANG,Zheng CHEN,Xiaokang LING,Shaohui HE. Study on service safety of super-large-span tunnels considering combined defects of lining voids and thinning[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 698-705.
[2] Tingfang YU,Genli ZHANG,Jiapeng ZHOU,Yicun TANG. Performance analysis and optimization of supercritical CO2 Brayton cycle coupled with organic flash cycle[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 130-140.
[3] Sijian ZHOU,Di ZHANG,Jian ZHOU,Ying LI,Xiaonan GONG. Deformation control of shield tunnel operation based on tunnel jet system method[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1427-1435.
[4] Mengtian WANG,Tai JIN,Yaolong LIU. Numerical analysis of tiltrotor/wing aerodynamic characteristics in continuous conversion mode[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 857-866.
[5] Tingfang YU,Ao FANG,Longfei LI,Xun XU. Integration method of trough solar-assisted coal-fired power generation system[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2330-2337.
[6] Yong ZHANG,Shen-gong PAN,Shui-chang LIU,Feng-zhao MAO,Qing-yu WANG,He LIU,Yi-fei YIN. Optimization and experimental study of heat transfer in liquid-cooled plate of full-featured disturbance element cells[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1157-1164.
[7] Jun-cheng LIU,Yong TAN,Xiang-hua SONG,Dong-dong FAN,Tian-ren LIU. Effects of through-wall leaking during excavation in water-rich sand on lateral wall deflections and surrounding environment[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 530-541.
[8] Yi-cun WANG,Chang-xiao SHAO,Tai JIN,Jiang-kuan XING,Kun LUO,Jian-ren FAN. Representation of combustion thermochemical manifolds via multi-gate mixture of experts[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2401-2411.
[9] Ting-wei JI,Xu ZHA,Fang-fang XIE,Yu-si WU,Xin-shuai ZHANG,Yi-yang JIANG,Chang-ping DU,Yao ZHENG. Multi-fidelity aerodynamic modeling method of aerospace vehicles based on Gaussian process regression[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2314-2324.
[10] Guo-peng LYU,Nan JIANG,Chuan-bo ZHOU,Hai-bo LI,Ying-kang YAO,Xu ZHANG. Surface explosion induced crack extension mechanism of reinforced concrete pipeline[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1704-1713.
[11] Jun SHI,Ying-ning QIU,Yi ZHOU. Direct numerical simulation of temporally evolving fractal-generated turbulence[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1606-1621.
[12] Gen LI,Tong-chun HAN,Jun-yang WU,Yu ZHANG. Coupled analysis on surface runoff and soil water movement by finite volume method[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 947-955.
[13] Meng-fan LIU,Gang-feng WU,Ke-feng ZHANG,Ping DONG. 2D non-cohesive earthen embankment breach model based on linear erosion formula[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 569-578.
[14] Shuai-ling GAO,Jun-qiang XIA,Bo-liang DONG,Mei-rong ZHOU,Jing-ming HOU. Mathematical model for urban flooding with effect of drainage of street inlets[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 590-597.
[15] Dong-jiao WANG,Chang-run CHEN,Kun LIU,Shou-qiang QIU. Investigation on parametrically excited motions of multiple degrees of freedom wave energy converter[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2496-2506.