|
|
Performance analysis and optimization of supercritical CO2 Brayton cycle coupled with organic flash cycle |
Tingfang YU( ),Genli ZHANG,Jiapeng ZHOU,Yicun TANG*( ) |
School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China |
|
|
Abstract In order to improve the thermal efficiency of the supercritical CO2 recompression Brayton cycle (SCRBC), an organic flash cycle (OFC) was coupled at the waste heat end of SCRBC as the bottom cycle for low-temperature waste heat utilization, and a solar tower-based SCRBC/OFC combined cycle was established. Under the set conditions, parameter analysis and exergy analysis were conducted on the effects of the main parameters of the combined cycle such as the split ratio, top-cycle turbine inlet pressure and temperature, turbine efficiency, flash temperature, and condensation temperature on the thermal performance of the system. Parameter analysis results show that there is an optimal split ratio at different top-cycle turbine inlet pressures and temperatures, and the optimal split ratio increases with the increase of turbine inlet pressure. The thermal efficiency of the system decreases with the increase of condensation temperature, and as the flash temperature increases, the thermal efficiency first increases and then decreases. The exergy loss analysis shows that under the given condition, the printed circuit heat exchanger (PCHE) has the highest exergy loss, followed by the SCRBC turbine, precooler, and reheater. A multi-objective optimization method was used to obtain a Pareto solution set that takes both system thermal performance and unit investment cost into consideration, and the optimal compromise solution was provided as a reference for engineering design schemes. The optimized SCRBC/OFC improves the thermal efficiency of the combined cycle by 12.5% compared to the unoptimized SCRBC.
|
Received: 30 November 2023
Published: 18 January 2025
|
|
Fund: 国家自然科学基金资助项目(52166009). |
Corresponding Authors:
Yicun TANG
E-mail: yutingfang@ncu.edu.cn;412400220134@email.ncu.edu.cn
|
超临界CO2布雷顿循环耦合有机闪蒸循环的性能分析及优化
为了提高超临界CO2再压缩布雷顿循环(SCRBC)的热效率,在SCRBC余热端耦合有机闪蒸循环(OFC)作为低温余热利用的底循环,建立基于太阳能塔的SCRBC/OFC联合循环. 在设定条件下,进行联合循环的主要参数(如分流比、顶循环透平入口压力和温度、透平效率、闪蒸温度和冷凝温度)对系统热力性能影响的参数分析和?分析. 参数分析结果表明,在不同的顶循环透平入口压力和温度下存在最佳分流比,该分流比随透平入口压力的提高而上升;系统热效率随着冷凝温度增加而降低,随闪蒸温度的增加先增后降. ?损分析结果表明,在给定的条件下,印刷电路板式换热器(PCHE)?损失最大,之后依次为SCRBC透平、预冷器、回热器. 采用多目标优化方法得到兼顾系统热力性能和单位投资成本的Pareto解集,为工程设计方案提供了最优折中解作为参考. 相比优化前的SCRBC,优化后SCRBC/OFC使联合循环的热效率提高了12.5%.
关键词:
热力循环,
超临界CO2 再压缩布雷顿循环,
有机闪蒸循环,
热力性能分析,
多目标优化
|
|
[1] |
KIM S, CHO Y, KIM M S, et al Characteristics and optimization of supercritical CO2 recompression power cycle and the influence of pinch point temperature difference of recuperators[J]. Energy, 2018, 147: 1216- 1226
doi: 10.1016/j.energy.2017.12.161
|
|
|
[2] |
CHENG W L, HUANG W X, NIAN Y L Global parameter optimization and criterion formula of supercritical carbon dioxide Brayton cycle with recompression[J]. Energy Conversion and Management, 2017, 150: 669- 677
doi: 10.1016/j.enconman.2017.08.055
|
|
|
[3] |
SHARMA O P, KAUSHIK S C, MANJUNATH K Thermodynamic analysis and optimization of a supercritical CO2 regenerative recompression Brayton cycle coupled with a marine gas turbine for shipboard waste heat recovery[J]. Thermal Science and Engineering Progress, 2017, 3: 62- 74
doi: 10.1016/j.tsep.2017.06.004
|
|
|
[4] |
PARK S H, KIM J Y, YOON M K, et al Thermodynamic and economic investigation of coal-fired power plant combined with various supercritical CO2 Brayton power cycle[J]. Applied Thermal Engineering, 2018, 130: 611- 623
doi: 10.1016/j.applthermaleng.2017.10.145
|
|
|
[5] |
REZNICEK E P, HINZE J F, NELLIS G F, et al Simulation of the supercritical CO2 recompression Brayton power cycle with a high-temperature regenerator[J]. Energy Conversion and Management, 2021, 229: 113678
doi: 10.1016/j.enconman.2020.113678
|
|
|
[6] |
MOHAMMED R H, ALSAGRI A S, WANG X L Performance improvement of supercritical carbon dioxide power cycles through its integration with bottoming heat recovery cycles and advanced heat exchanger design: a review[J]. International Journal of Energy Research, 2020, 44 (9): 7108- 7135
doi: 10.1002/er.5319
|
|
|
[7] |
曹宇, 王治红, 马宁, 等 超临界二氧化碳布雷顿/有机朗肯循环联合系统的热力学特性[J]. 热能动力工程, 2020, 35 (4): 9- 15 CAO Yu, WANG Zhihong, MA Ning, et al Thermodynamic properties of supercritical CO2 Brayton/organic Rankine cycle combined system[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35 (4): 9- 15
|
|
|
[8] |
BESARATI S M, GOSWAMI D Y Analysis of advanced supercritical carbon dioxide power cycle with a bottoming cycle for concentrating solar power applications[J]. Journal of Solar Energy Engineering, 2014, 136 (1): 010904
doi: 10.1115/1.4025700
|
|
|
[9] |
WANG K, HE Y L Thermodynamic analysis and optimization of a molten salt solar power tower integrated with a recompression supercritical CO2 Brayton cycle based on integrated modeling[J]. Energy Conversion and Management, 2017, 135: 336- 350
doi: 10.1016/j.enconman.2016.12.085
|
|
|
[10] |
KIM K H, PEREZ-BLANCO H Performance analysis of a combined organic rankine cycle and vapor compression cycle for power and refrigeration cogeneration[J]. Applied Thermal Engineering, 2015, 91: 964- 974
doi: 10.1016/j.applthermaleng.2015.04.062
|
|
|
[11] |
阎增范, 张云贺, 孙文强 工业余热有机闪蒸循环回收方案及火用性能分析[J]. 冶金能源, 2021, 40 (5): 48- 52 YAN Zengfan, ZHANG Yunhe, SUN Wenqiang Industrial waste heat organic flash cycle recovery scheme and exergy performance analysis[J]. Energy for Metallurgical Industry, 2021, 40 (5): 48- 52
|
|
|
[12] |
HO T, MAO S S, GREIF R Comparison of the organic flash cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy[J]. Energy, 2012, 42 (1): 213- 223
doi: 10.1016/j.energy.2012.03.067
|
|
|
[13] |
QUE Y, HU Z M, REN S, et al Thermodynamic analysis of a combined recompression supercritical carbon dioxide Brayton cycle with an organic flash cycle for hybrid solar-geothermal energies power generation[J]. Frontiers in Energy Research, 2022, 10: 924134
doi: 10.3389/fenrg.2022.924134
|
|
|
[14] |
HAN C H, KIM K H Exergetical analysis of organic flash cycle with two-phase expander for recovery of finite thermal reservoirs[J]. Journal of Thermal Science, 2014, 23: 572- 579
doi: 10.1007/s11630-014-0743-1
|
|
|
[15] |
MAHMOUDI S M S, SARDROUD R G, SADEGHI M, et al Integration of supercritical CO2 recompression Brayton cycle with organic Rankine/flash and Kalina cycles: thermoeconomic comparison[J]. Sustainability, 2022, 14 (14): 8769
doi: 10.3390/su14148769
|
|
|
[16] |
MONDAL S, DE S Waste heat recovery through organic flash cycle (OFC) using R245fa–R600 mixture as the working fluid[J]. Clean Technologies and Environmental Policy, 2019, 21: 1575- 1586
doi: 10.1007/s10098-019-01724-x
|
|
|
[17] |
曹春辉, 李惟毅 夹点对超临界二氧化碳布雷顿再压缩循环性能的影响[J]. 化工进展, 2017, 36 (11): 3986- 3992 CAO Chunhui, LI Weiyi Effect of pinch point on thermal and exergetic performance of supercritical carbon dioxide Brayton recompression cycle[J]. Chemical Industry and Engineering Progress, 2017, 36 (11): 3986- 3992
|
|
|
[18] |
WU C, WANG S S, LI J Exergoeconomic analysis and optimization of a combined supercritical carbon dioxide recompression Brayton/organic flash cycle for nuclear power plants[J]. Energy Conversion and Management, 2018, 171: 936- 952
doi: 10.1016/j.enconman.2018.06.041
|
|
|
[19] |
MOHAMMADI K, MCGOWAN J G Thermoeconomic analysis of multi-stage recuperative Brayton cycles: part ii–waste energy recovery using CO2 and organic Rankine power cycles[J]. Energy Conversion and Management, 2019, 185: 920- 934
doi: 10.1016/j.enconman.2019.01.091
|
|
|
[20] |
MONDEJAR M E, ANDREASEN J G, PIEROBON L, et al A review of the use of organic Rankine cycle power systems for maritime applications[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 126- 151
doi: 10.1016/j.rser.2018.03.074
|
|
|
[21] |
FENG Y M, DU Z Q, SHREKA M, et al Thermodynamic analysis and performance optimization of the supercritical carbon dioxide Brayton cycle combined with the Kalina cycle for waste heat recovery from a marine low-speed diesel engine[J]. Energy Conversion and Management, 2020, 206: 112483
doi: 10.1016/j.enconman.2020.112483
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|