Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (1): 130-140    DOI: 10.3785/j.issn.1008-973X.2025.01.013
    
Performance analysis and optimization of supercritical CO2 Brayton cycle coupled with organic flash cycle
Tingfang YU(),Genli ZHANG,Jiapeng ZHOU,Yicun TANG*()
School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China
Download: HTML     PDF(1121KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to improve the thermal efficiency of the supercritical CO2 recompression Brayton cycle (SCRBC), an organic flash cycle (OFC) was coupled at the waste heat end of SCRBC as the bottom cycle for low-temperature waste heat utilization, and a solar tower-based SCRBC/OFC combined cycle was established. Under the set conditions, parameter analysis and exergy analysis were conducted on the effects of the main parameters of the combined cycle such as the split ratio, top-cycle turbine inlet pressure and temperature, turbine efficiency, flash temperature, and condensation temperature on the thermal performance of the system. Parameter analysis results show that there is an optimal split ratio at different top-cycle turbine inlet pressures and temperatures, and the optimal split ratio increases with the increase of turbine inlet pressure. The thermal efficiency of the system decreases with the increase of condensation temperature, and as the flash temperature increases, the thermal efficiency first increases and then decreases. The exergy loss analysis shows that under the given condition, the printed circuit heat exchanger (PCHE) has the highest exergy loss, followed by the SCRBC turbine, precooler, and reheater. A multi-objective optimization method was used to obtain a Pareto solution set that takes both system thermal performance and unit investment cost into consideration, and the optimal compromise solution was provided as a reference for engineering design schemes. The optimized SCRBC/OFC improves the thermal efficiency of the combined cycle by 12.5% compared to the unoptimized SCRBC.



Key wordsthermal cycle      supercritical CO2 recompression Brayton cycle      organic flash cycle      thermal performance analysis      multi-objective optimization     
Received: 30 November 2023      Published: 18 January 2025
CLC:  TK 11  
Fund:  国家自然科学基金资助项目(52166009).
Corresponding Authors: Yicun TANG     E-mail: yutingfang@ncu.edu.cn;412400220134@email.ncu.edu.cn
Cite this article:

Tingfang YU,Genli ZHANG,Jiapeng ZHOU,Yicun TANG. Performance analysis and optimization of supercritical CO2 Brayton cycle coupled with organic flash cycle. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 130-140.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.01.013     OR     https://www.zjujournals.com/eng/Y2025/V59/I1/130


超临界CO2布雷顿循环耦合有机闪蒸循环的性能分析及优化

为了提高超临界CO2再压缩布雷顿循环(SCRBC)的热效率,在SCRBC余热端耦合有机闪蒸循环(OFC)作为低温余热利用的底循环,建立基于太阳能塔的SCRBC/OFC联合循环. 在设定条件下,进行联合循环的主要参数(如分流比、顶循环透平入口压力和温度、透平效率、闪蒸温度和冷凝温度)对系统热力性能影响的参数分析和?分析. 参数分析结果表明,在不同的顶循环透平入口压力和温度下存在最佳分流比,该分流比随透平入口压力的提高而上升;系统热效率随着冷凝温度增加而降低,随闪蒸温度的增加先增后降. ?损分析结果表明,在给定的条件下,印刷电路板式换热器(PCHE)?损失最大,之后依次为SCRBC透平、预冷器、回热器. 采用多目标优化方法得到兼顾系统热力性能和单位投资成本的Pareto解集,为工程设计方案提供了最优折中解作为参考. 相比优化前的SCRBC,优化后SCRBC/OFC使联合循环的热效率提高了12.5%.


关键词: 热力循环,  超临界CO2 再压缩布雷顿循环,  有机闪蒸循环,  热力性能分析,  多目标优化 
Fig.1 Schematic diagram of supercitical CO2 recompression Brayton cycle/organic flash cycle combined system
Fig.2 Temperature-entropy diagrams for different cycle systems
循环参数数值
环境温度t0/℃25
环境压力p0/MPa0.101 325
主压缩机入口压力p8/MPa7.8
顶循环压比rp2.6
透平入口温度t3/℃500
主压缩机入口温度t8/℃36
换热器夹点温差Δte/℃8
其他回热器夹点温差Δtoth/℃10
闪蒸温度t04/℃80
冷凝温度t01/℃40
熔融盐进口温度t1/℃680
透平等熵效率ηT0.85
主再压缩机等熵效率ηMCηRC0.85
膨胀机等熵效率ηb,T0.8
泵等熵效率ηP0.8
CO2质量流量qm,c/ (kg·s?1)480
R600质量流量qm,o/ (kg·s?1)70
预冷器冷却水入口温度t12/℃15
冷凝器冷却水入口温度t010/℃15
预冷器冷却水入口压力p12/MPa1.013 25
冷凝器冷却水入口压力p010/MPa1.013 25
预冷器冷却水质量流量qm,w1/(kg·s?1)480
冷凝器冷却水质量流量qm,w2/(kg·s?1)720
Tab.1 Parameter of supercitical CO2 recompression Brayton cycle/organic flash cycle combined system [17-18]
循环X文献参数模型计算参数$\delta $/%
SCRBC[17]0.63ηth=35.47%ηth=35.52%0.14
0.70ηth=37.69%ηth=37.68%0.03
0.75ηth=37.02%ηth=36.89%0.35
OFC[18]
(R245fa)
p03=1.549 MPap03=1.55 MPa0.06
t06=51.18 ℃t06=51.18 ℃0
t09=40 ℃t09=40 ℃0
ηth=3.73%ηth=3.73%0
Tab.2 Model validation of supercitical CO2 recompression Brayton cycle and organic flash cycle
Fig.3 Variation of multiple outlet temperatures with split ratio for proposed system
Fig.4 Variation of thermal efficiency with split ratio for different systems
Fig.5 Ratio of exergy loss for each element of proposed system
Fig.6 Effect of turbine inlet pressure on thermal efficiency of proposed system
Fig.7 Effect of turbine inlet temperature on thermal efficiency of proposed system
Fig.8 Effect of turbine efficiency on thermal efficiency of different systems
Fig.9 Effect of turbine inlet pressure and temperature on thermal efficiency of different systems
Fig.10 Effect of flash temperature and condensation temperature on thermal efficiency of different systems
Fig.11 Pareto front set of supercitical CO2 recompression Brayton cycle/organic flash cycle combined system
t3/℃p3/kPat01/℃Xt04/℃$\eta $exy1(x)y2(x)
596.061723682.993543.10320.714177.95180.66941.49380.0325
595.514724103.048643.22390.712575.11200.67011.49230.0329
594.718523707.563844.04170.771777.60670.65411.52890.0265
596.443324353.048843.22300.725578.40640.66711.49900.0313
595.298924095.083144.51590.737976.58060.66321.50790.0291
594.714025051.988344.71540.801078.57960.64891.54100.0248
593.961824737.754644.69610.864978.60530.63601.57230.0225
596.288424276.547843.83590.771178.35470.65511.52640.0267
595.345324077.457043.97610.726177.49770.66621.50090.0306
595.229024287.153844.38910.789279.47720.65041.53750.0254
594.743624375.706843.67610.746777.29850.66071.51360.0288
595.194124840.369344.33040.758977.89180.65941.51640.0278
594.685424736.186444.96710.870478.88520.63551.57360.0222
594.960422738.146243.20600.712473.37190.66801.49710.0320
576.362620829.382944.54180.894679.12700.60751.64600.0218
Tab.3 Pareto efficient solutions forming to Pareto front
[1]   KIM S, CHO Y, KIM M S, et al Characteristics and optimization of supercritical CO2 recompression power cycle and the influence of pinch point temperature difference of recuperators[J]. Energy, 2018, 147: 1216- 1226
doi: 10.1016/j.energy.2017.12.161
[2]   CHENG W L, HUANG W X, NIAN Y L Global parameter optimization and criterion formula of supercritical carbon dioxide Brayton cycle with recompression[J]. Energy Conversion and Management, 2017, 150: 669- 677
doi: 10.1016/j.enconman.2017.08.055
[3]   SHARMA O P, KAUSHIK S C, MANJUNATH K Thermodynamic analysis and optimization of a supercritical CO2 regenerative recompression Brayton cycle coupled with a marine gas turbine for shipboard waste heat recovery[J]. Thermal Science and Engineering Progress, 2017, 3: 62- 74
doi: 10.1016/j.tsep.2017.06.004
[4]   PARK S H, KIM J Y, YOON M K, et al Thermodynamic and economic investigation of coal-fired power plant combined with various supercritical CO2 Brayton power cycle[J]. Applied Thermal Engineering, 2018, 130: 611- 623
doi: 10.1016/j.applthermaleng.2017.10.145
[5]   REZNICEK E P, HINZE J F, NELLIS G F, et al Simulation of the supercritical CO2 recompression Brayton power cycle with a high-temperature regenerator[J]. Energy Conversion and Management, 2021, 229: 113678
doi: 10.1016/j.enconman.2020.113678
[6]   MOHAMMED R H, ALSAGRI A S, WANG X L Performance improvement of supercritical carbon dioxide power cycles through its integration with bottoming heat recovery cycles and advanced heat exchanger design: a review[J]. International Journal of Energy Research, 2020, 44 (9): 7108- 7135
doi: 10.1002/er.5319
[7]   曹宇, 王治红, 马宁, 等 超临界二氧化碳布雷顿/有机朗肯循环联合系统的热力学特性[J]. 热能动力工程, 2020, 35 (4): 9- 15
CAO Yu, WANG Zhihong, MA Ning, et al Thermodynamic properties of supercritical CO2 Brayton/organic Rankine cycle combined system[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35 (4): 9- 15
[8]   BESARATI S M, GOSWAMI D Y Analysis of advanced supercritical carbon dioxide power cycle with a bottoming cycle for concentrating solar power applications[J]. Journal of Solar Energy Engineering, 2014, 136 (1): 010904
doi: 10.1115/1.4025700
[9]   WANG K, HE Y L Thermodynamic analysis and optimization of a molten salt solar power tower integrated with a recompression supercritical CO2 Brayton cycle based on integrated modeling[J]. Energy Conversion and Management, 2017, 135: 336- 350
doi: 10.1016/j.enconman.2016.12.085
[10]   KIM K H, PEREZ-BLANCO H Performance analysis of a combined organic rankine cycle and vapor compression cycle for power and refrigeration cogeneration[J]. Applied Thermal Engineering, 2015, 91: 964- 974
doi: 10.1016/j.applthermaleng.2015.04.062
[11]   阎增范, 张云贺, 孙文强 工业余热有机闪蒸循环回收方案及火用性能分析[J]. 冶金能源, 2021, 40 (5): 48- 52
YAN Zengfan, ZHANG Yunhe, SUN Wenqiang Industrial waste heat organic flash cycle recovery scheme and exergy performance analysis[J]. Energy for Metallurgical Industry, 2021, 40 (5): 48- 52
[12]   HO T, MAO S S, GREIF R Comparison of the organic flash cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy[J]. Energy, 2012, 42 (1): 213- 223
doi: 10.1016/j.energy.2012.03.067
[13]   QUE Y, HU Z M, REN S, et al Thermodynamic analysis of a combined recompression supercritical carbon dioxide Brayton cycle with an organic flash cycle for hybrid solar-geothermal energies power generation[J]. Frontiers in Energy Research, 2022, 10: 924134
doi: 10.3389/fenrg.2022.924134
[14]   HAN C H, KIM K H Exergetical analysis of organic flash cycle with two-phase expander for recovery of finite thermal reservoirs[J]. Journal of Thermal Science, 2014, 23: 572- 579
doi: 10.1007/s11630-014-0743-1
[15]   MAHMOUDI S M S, SARDROUD R G, SADEGHI M, et al Integration of supercritical CO2 recompression Brayton cycle with organic Rankine/flash and Kalina cycles: thermoeconomic comparison[J]. Sustainability, 2022, 14 (14): 8769
doi: 10.3390/su14148769
[16]   MONDAL S, DE S Waste heat recovery through organic flash cycle (OFC) using R245fa–R600 mixture as the working fluid[J]. Clean Technologies and Environmental Policy, 2019, 21: 1575- 1586
doi: 10.1007/s10098-019-01724-x
[17]   曹春辉, 李惟毅 夹点对超临界二氧化碳布雷顿再压缩循环性能的影响[J]. 化工进展, 2017, 36 (11): 3986- 3992
CAO Chunhui, LI Weiyi Effect of pinch point on thermal and exergetic performance of supercritical carbon dioxide Brayton recompression cycle[J]. Chemical Industry and Engineering Progress, 2017, 36 (11): 3986- 3992
[18]   WU C, WANG S S, LI J Exergoeconomic analysis and optimization of a combined supercritical carbon dioxide recompression Brayton/organic flash cycle for nuclear power plants[J]. Energy Conversion and Management, 2018, 171: 936- 952
doi: 10.1016/j.enconman.2018.06.041
[19]   MOHAMMADI K, MCGOWAN J G Thermoeconomic analysis of multi-stage recuperative Brayton cycles: part ii–waste energy recovery using CO2 and organic Rankine power cycles[J]. Energy Conversion and Management, 2019, 185: 920- 934
doi: 10.1016/j.enconman.2019.01.091
[20]   MONDEJAR M E, ANDREASEN J G, PIEROBON L, et al A review of the use of organic Rankine cycle power systems for maritime applications[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 126- 151
doi: 10.1016/j.rser.2018.03.074
[21]   FENG Y M, DU Z Q, SHREKA M, et al Thermodynamic analysis and performance optimization of the supercritical carbon dioxide Brayton cycle combined with the Kalina cycle for waste heat recovery from a marine low-speed diesel engine[J]. Energy Conversion and Management, 2020, 206: 112483
doi: 10.1016/j.enconman.2020.112483
[1] Qianlin YE,Wanliang WANG,Zheng WANG. Survey of multi-objective particle swarm optimization algorithms and their applications[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1107-1120.
[2] Yan ZHAN,Jieya CHEN,Weiguang JIANG,Jiansha LU,Hongtao TANG,Xinyu SONG,Lili XU,Saimiao LIU. Multi-objective workshop material distribution method based on improved NSGA-[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2510-2519.
[3] Tingfang YU,Ao FANG,Longfei LI,Xun XU. Integration method of trough solar-assisted coal-fired power generation system[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2330-2337.
[4] Xiao-yan CAO,Min YU,Jin ZHOU,Yun-zhi WANG. Multi-objective optimization design of adjustable rotary fluid damper parameter[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1439-1449.
[5] Ting-fang YU,Ling SONG. Performance analysis and optimization of supercritical CO2 Brayton cycle waste heat recovery system[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 404-414.
[6] Wan-liang WANG,Zhong-kui CHEN,Fei WU,Zheng WANG,Meng-jiao YU. Dynamic multi-objective optimization algorithm based on individual prediction[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2133-2146.
[7] Wan-liang WANG,Ya-wen JIN,Jia-cheng CHEN,Guo-qing LI,Ming-zhi HU,Jian-hang DONG. Multi-objective particle swarm optimization algorithm with multi-role and multi-strategy[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 531-541.
[8] Jun-heng XU,Xiao-jun YANG,Bing LI. Design of wing mechanism with variable camber based on cross-spring flexural pivots[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 444-451, 509.
[9] Qi-lin DENG,Juan LU,Yong-hui CHEN,Jian FENG,Xiao-ping LIAO,Jun-yan MA. Optimization method of CNC milling parameters based on deep reinforcement learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2145-2155.
[10] Jun-jie CHEN,Hong-jun LI,Zhang-hua CAO. Performance-aware resource allocation algorithm for core network control plane[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1782-1787.
[11] Xiao-zhu LI,Wei-qing WANG. Bi-level robust game optimal scheduling of regional comprehensive energy system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 177-188.
[12] Kai-jun LOU,Feng YU,Tang-dai XIA,Jian MA. Stability analysis of diaphragm wall retained structure in clay[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1697-1705.
[13] Xiang-fei MENG,Ren-guang WANG,Yuan-li XU. Torque distribution strategy of pure electric driving mode for dual planetary vehicle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2214-2223.
[14] Hua HUANG,Wen-qiang DENG,Yuan LI,Run-lan GUO. Mass matching design of machine tool parts based on spatial dynamics optimization[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2009-2017.
[15] Jia-shuang FAN,Sui-huai YU,Jian-jie CHU,Hui WANG,Chen CHEN,Wen-zhe CUN,Tian CHEN,Jia-yan GUO. Optimal decision-making method of design scheme in cloud service mode[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 143-151.