Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (7): 1439-1449    DOI: 10.3785/j.issn.1008-973X.2023.07.019
    
Multi-objective optimization design of adjustable rotary fluid damper parameter
Xiao-yan CAO(),Min YU*(),Jin ZHOU,Yun-zhi WANG
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Download: HTML     PDF(2158KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new adjustable rotary fluid damper was developed in order to achieve good vibration control effect of helicopter control system with minimum geometric tolerance manufacturing cost. The multi-objective optimization of key geometric parameters was conducted. The rotary valve was driven through a servo motor to realize the real-time adjustment of the damping force in order to realize the vibration control of the helicopter control system. A quasi-static model of the damper was established based on the pressure-flow formula. The influence of structural geometric parameters on the maximum damping torque and adjustable multiple was analyzed. The non-dominated sorting genetic algorithm II (NSGA-II) was used to conduct multi-objective optimization of each structural parameter in order to meet the requirements of damper output torque, dynamic adjustable range and minimum tolerance manufacturing cost at the same time. The optimal structural design parameters of the damper were obtained. Results show that the multi-objective optimal design can achieve the minimum manufacturing cost of tolerance on the premise of satisfying the mechanical properties of the damper. The correctness of the multi-objective optimization results of the damper parameters based on the quasi-static model was verified through the mechanical performance test of the prototype of the adjustable rotary fluid damper.



Key wordsadjustable damper      multi-objective optimization      rotary damper      response surface analysis      sensitivity analysis      helicopter control system     
Received: 09 July 2022      Published: 17 July 2023
CLC:  TB 535  
Corresponding Authors: Min YU     E-mail: caoxiaoyan0621@nuaa.edu.cn;yumin@nuaa.edu.cn
Cite this article:

Xiao-yan CAO,Min YU,Jin ZHOU,Yun-zhi WANG. Multi-objective optimization design of adjustable rotary fluid damper parameter. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1439-1449.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.07.019     OR     https://www.zjujournals.com/eng/Y2023/V57/I7/1439


可调旋转式流体阻尼器参数多目标优化设计

为了以最小几何公差制造成本实现直升机操纵系统良好的振动控制效果,开发新型可调旋转式流体阻尼器,对关键的几何参数进行多目标优化. 该阻尼器通过伺服电机带动转阀实现阻尼力的实时调节,实现直升机操纵系统的振动控制. 基于压力-流量公式,建立阻尼器准静态模型,分析结构几何参数对最大阻尼力矩、可调倍数的影响规律. 为了同时满足阻尼器输出力矩、动态可调范围及最小公差制造成本的要求,采用非支配排序遗传算法(NSGA-II)对各结构参数进行多目标优化设计,确定阻尼器的最佳结构设计参数. 结果表明,多目标优化设计能够在满足阻尼器力学特性的前提下实现尽可能小的公差制造成本. 对制作的可调旋转式流体阻尼器样机进行力学性能测试,验证了基于准静态模型的阻尼器参数多目标优化结果的正确性.


关键词: 可调阻尼器,  多目标优化,  旋转式阻尼器,  响应面分析,  灵敏度分析,  直升机操纵系统 
Fig.1 Design scheme of adjustable rotary fluid damper
Fig.2 Structural parameter diagram of adjustable rotary fluid damper
参数 初始值
Ds/mm 46
Dr/mm 22
Ly/mm 38
μ /(kg·m?1·s?1) 1.17×10?2
b1/mm 5
b2/mm 6
dh/mm 1.5
δ1/mm 初始值0.03
公差(0.01~0.03)
δ2/mm 初始值0.03
公差(0.01~0.03)
δ3/mm 初始值0.03
公差(0.01~0.03)
lr/mm 3
αr/(°) 9
ω/(rad·s?1) 0.229
Tab.1 Initial value of structural parameters of semi-rotary fluid damper
Fig.3 Influence of structural parameters on damping torque when rotary valve is fully closed
Fig.4 Sensitivity analysis of structural parameters when rotary valve is fully closed
Fig.5 Influence of structural parameters on adjustable range of damping moment
Fig.6 Sensitivity analysis of influence of structural parameters on adjustable range of damping moment
Fig.7 Solution flow chart of NSGA-II
Fig.8 Distribution and projection graph of Pareto solution set
序号 f1 f2 f3
1 ?3.549 ?8.139 1069.473
2 ?3.584 ?8.093 1067.954
3 ?3.586 ?8.198 1073.108
修正后 ?3.635 ?8.205 1067.954
Tab.2 Selected Pareto solution
mm
序号 δ1U δ2U δ3U dh Ds Dr Ly
1 0.042 0.040 0.046 1.981 48.86 20.13 38.97
2 0.042 0.039 0.047 1.995 48.77 20.07 38.89
3 0.041 0.040 0.047 1.979 48.63 20.20 39.09
修正后 0.042 0.039 0.047 2 49 20 39
Tab.3 Structural parameter values of selected Pareto solution
Fig.9 Variation of damping torque with angular velocity
Fig.10 Adjustable multiplier changes with angular velocity
Fig.11 Diagram of damper prototype
Fig.12 Diagram of damper test setup
Fig.13 Results of damper performance tests
[1]   贾金亮. 共轴刚性双旋翼直升机操纵系统设计研究[D]. 南京: 南京航空航天大学, 2013: 1-5.
JIA Jin-liang. Research on control system of coaxial rigid twin-rotor helicopter [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013: 1-5.
[2]   王放, 陈铭, 徐冠峰 直升机操纵杆振动特性测量与分析[J]. 航空动力学报, 2013, 28 (10): 2209- 2215
WANG Fang, CHEN Ming, XU Guan-feng Measurement and analysis of helicopter control stick vibration characteristics[J]. Journal of Aerospace Power, 2013, 28 (10): 2209- 2215
[3]   CAO X Y, YU M, ZHOU J, et al Modeling and experimental verification of a semi-rotary fluid damper based on an improved Kelvin model[J]. Arabian Journal for Science and Engineering, 2021, 46 (8): 7587- 7596
doi: 10.1007/s13369-021-05414-z
[4]   IMADUDDIN F, MAZLAN S A, ZAMZURI H A design and modelling review of rotary magnetorheological damper[J]. Materials and Design, 2013, 51: 575- 591
doi: 10.1016/j.matdes.2013.04.042
[5]   CAO X Y, YU M, ZHOU J, et al Modeling and control of helicopter flight control system with a controllable semi-rotary fluid viscous damper[J]. Alexandria Engineering Journal, 2022, 61 (12): 12725- 12738
doi: 10.1016/j.aej.2022.06.035
[6]   YANG C B, GAO X D, LIU Z F, et al. Modeling and analysis of the vibration characteristics of a new type of in-arm hydropneumatic suspension of a tracked vehicle [J]. Journal of Vibroengineering. 2016, 18(7): 4627-4646.
[7]   ARELEKATTI V N M, PETELINA N T, JOHNSON W B, et al. Design of a passive, shear-based rotary hydraulic damper for single-axis prosthetic knees [C]// 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Quebec: ASME, 2018: DETC2018-85962.
[8]   JEHLE G, FIDLIN A Hydrodynamic optimized vibration damper[J]. Journal of Sound and Vibration, 2019, 440: 100- 112
doi: 10.1016/j.jsv.2018.10.008
[9]   孙宝凤, 张新康, 李根道, 等 第Ⅱ类机器人混流装配线的平衡与排序联合决策[J]. 浙江大学学报: 工学版, 2022, 56 (6): 1097- 1106
SUN Bao-feng, ZHANG Xin-kang, LI Gen-dao, et al Joint decision-making of balancing and sequencing for type-Ⅱ robotic mixed-model assembly line[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (6): 1097- 1106
[10]   HU H N, JIAN Z, LIU X H, et al Multi-objective optimal design and performance of magnetorheological damper[J]. Materialwissenschaft und Werkstofftechnik, 2021, 52 (5): 540- 547
doi: 10.1002/mawe.202000175
[11]   ZHANG W, HAN B B, LI X, et al Multi-objective system optimization method and experimental validation of a centralized squeeze film damper using a cell mapping method considering dynamic constraints[J]. Engineering Optimization, 2021, 53 (6): 941- 961
doi: 10.1080/0305215X.2020.1759577
[12]   HAO Y D, HE Z C, LI G Y, et al Uncertainty analysis and optimization of automotive driveline torsional vibration with a driveline and rear axle coupled model[J]. Engineering Optimization, 2018, 50 (11): 1871- 1893
doi: 10.1080/0305215X.2017.1421952
[13]   XU F H, DONG D W, HUANG Y, et al A comprehensive optimal design method for magnetorheological dampers utilized in DMU power package[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2022, 236 (3): 533- 547
[14]   NGUYEN Q H, CHOI S B, WOO J K Optimal design of magnetorheological fluid-based dampers for front-loaded washing machines[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014, 228 (2): 294- 306
doi: 10.1177/0954406213485908
[15]   高晓东, 顾亮, 管继富, 等 履带车辆肘内式半主动油气悬挂性能研究[J]. 振动. 测试与诊断, 2015, 35 (5): 968- 972
GAO Xiao-dong, GU Liang, GUAN Ji-fu, et al Study on the performance of semi-active in-arm hydro-pneumatic suspension for tracked vehicle[J]. Journal of Vibration Measurement and Diagnosis, 2015, 35 (5): 968- 972
[16]   毛建中, 王路翔, 毛歅博, 等 节流方式对扭转减振器的影响[J]. 湖南大学学报: 自然科学版, 2012, 39 (5): 33- 37
MAO Jian-zhong, WANG Lu-xiang, MAO Yin-bo, et al Effect of the throttle on the torsion damp shock absorber[J]. Journal of Hunan University: Natural Sciences, 2012, 39 (5): 33- 37
[17]   HAMBY D M A review of techniques for parameter sensitivity analysis of environmental models[J]. Environmental Monitoring and Assessment, 1994, 32 (2): 135- 154
doi: 10.1007/BF00547132
[18]   JIANG M, RUI X T, ZHU W, et al Parameter sensitivity analysis and optimum model of the magnetorheological damper's Bouc-Wen model[J]. Journal of Vibration and Control, 2021, 27 (19/20): 2291- 2302
[19]   谢慧超, 姜潮, 张智罡, 等 基于区间分析的汽车平顺性优化[J]. 汽车工程, 2014, 36 (9): 1127- 1131
XIE Hui-chao, JIANG Chao, ZHANG Zhi-gang, et al Vehicle ride comfort optimization based on interval analysis[J]. Automotive Engineering, 2014, 36 (9): 1127- 1131
[20]   郝耀东, 何智成, 李光耀, 等 考虑公差的扭转动力吸振器不确定性优化设计[J]. 中国机械工程, 2018, 29 (14): 1645- 1652
HAO Yao-dong, HE Zhi-cheng, LI Guang-yao, et al Uncertain optimization of torsional vibration damper considering tolerant design[J]. China Mechanical Engineering, 2018, 29 (14): 1645- 1652
doi: 10.3969/j.issn.1004-132X.2018.14.002
[21]   JIANG M, RUI X T, YANG F F, et al Multi-objective optimization design for a magnetorheological damper[J]. Journal of Intelligent Material Systems and Structures, 2022, 33 (1): 33- 45
doi: 10.1177/1045389X211006907
[22]   SAINI R, CHANDRAMOHAN S, SUJATHA S, et al Design of bypass rotary vane magnetorheological damper for prosthetic knee application[J]. Journal of Intelligent Material Systems and Structures, 2021, 32 (9): 931- 942
doi: 10.1177/1045389X20942577
[23]   郑玲, 牛伯瑶, 李以农, 等 基于遗传算法的汽车磁流变减振器多目标优化[J]. 汽车工程, 2016, 38 (7): 871- 877
ZHENG Ling, NIU Bo-yao, LI Yi-nong, et al Multi-objective optimization of vehicle MR damper based on genetic algorithm[J]. Automotive Engineering, 2016, 38 (7): 871- 877
doi: 10.3969/j.issn.1000-680X.2016.07.013
[24]   董小闵, 丁飞耀, 管治, 等 面向高速的磁流变缓冲器多目标优化设计及性能研究[J]. 机械工程学报, 2014, 50 (5): 127- 134
DONG Xiao-min, DING Fei-yao, GUAN Zhi, et al Multi-objective optimization and performance research of magneto-rheological absorber under high speed[J]. Journal of Mechanical Engineering, 2014, 50 (5): 127- 134
doi: 10.3901/JME.2014.05.127
[1] Ting-fang YU,Ling SONG. Performance analysis and optimization of supercritical CO2 Brayton cycle waste heat recovery system[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 404-414.
[2] Wan-liang WANG,Ya-wen JIN,Jia-cheng CHEN,Guo-qing LI,Ming-zhi HU,Jian-hang DONG. Multi-objective particle swarm optimization algorithm with multi-role and multi-strategy[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 531-541.
[3] Jun-heng XU,Xiao-jun YANG,Bing LI. Design of wing mechanism with variable camber based on cross-spring flexural pivots[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 444-451, 509.
[4] Ying LI,Guan-xiong WANG,Wei YAN,Ying-ge ZHAO,Chong-lei MA. Improved sparse grid collocation method for uncertainty quantification of EIT conductivity distribution[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 613-621.
[5] Qi-lin DENG,Juan LU,Yong-hui CHEN,Jian FENG,Xiao-ping LIAO,Jun-yan MA. Optimization method of CNC milling parameters based on deep reinforcement learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2145-2155.
[6] Jun-jie CHEN,Hong-jun LI,Zhang-hua CAO. Performance-aware resource allocation algorithm for core network control plane[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1782-1787.
[7] Jia-yi SHEN,Meng KU,Li-zhong WANG. Stability analyses of submarine slopes based on shear band propagation method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1299-1307.
[8] Xiao-zhu LI,Wei-qing WANG. Bi-level robust game optimal scheduling of regional comprehensive energy system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 177-188.
[9] Kai-jun LOU,Feng YU,Tang-dai XIA,Jian MA. Stability analysis of diaphragm wall retained structure in clay[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1697-1705.
[10] Xiu-fen ZHANG,Yun-fei GAO. Multi-dimensional hierarchical remanufacturability evaluation method for end-of-life mechanical parts[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 954-962.
[11] Xiang-fei MENG,Ren-guang WANG,Yuan-li XU. Torque distribution strategy of pure electric driving mode for dual planetary vehicle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2214-2223.
[12] Teng-yi HUANG,Jin ZHOU,Yan XU,Fan-xu MENG. Modeling of MR damper based on multi-field coupling analysis and influence of structural parameters[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2001-2008.
[13] Hua HUANG,Wen-qiang DENG,Yuan LI,Run-lan GUO. Mass matching design of machine tool parts based on spatial dynamics optimization[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2009-2017.
[14] Jia-shuang FAN,Sui-huai YU,Jian-jie CHU,Hui WANG,Chen CHEN,Wen-zhe CUN,Tian CHEN,Jia-yan GUO. Optimal decision-making method of design scheme in cloud service mode[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 143-151.
[15] Feng CHENG,Dong ZHANG,Shuo TANG. Aerodynamics/propulsion coupled modeling and analysis of hypersonic vehicle within wide speed range[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 1006-1018.