A new adjustable rotary fluid damper was developed in order to achieve good vibration control effect of helicopter control system with minimum geometric tolerance manufacturing cost. The multi-objective optimization of key geometric parameters was conducted. The rotary valve was driven through a servo motor to realize the real-time adjustment of the damping force in order to realize the vibration control of the helicopter control system. A quasi-static model of the damper was established based on the pressure-flow formula. The influence of structural geometric parameters on the maximum damping torque and adjustable multiple was analyzed. The non-dominated sorting genetic algorithm II (NSGA-II) was used to conduct multi-objective optimization of each structural parameter in order to meet the requirements of damper output torque, dynamic adjustable range and minimum tolerance manufacturing cost at the same time. The optimal structural design parameters of the damper were obtained. Results show that the multi-objective optimal design can achieve the minimum manufacturing cost of tolerance on the premise of satisfying the mechanical properties of the damper. The correctness of the multi-objective optimization results of the damper parameters based on the quasi-static model was verified through the mechanical performance test of the prototype of the adjustable rotary fluid damper.
Fig.1Design scheme of adjustable rotary fluid damper
Fig.2Structural parameter diagram of adjustable rotary fluid damper
参数
初始值
Ds/mm
46
Dr/mm
22
Ly/mm
38
μ /(kg·m?1·s?1)
1.17×10?2
b1/mm
5
b2/mm
6
dh/mm
1.5
δ1/mm
初始值0.03 公差(0.01~0.03)
δ2/mm
初始值0.03 公差(0.01~0.03)
δ3/mm
初始值0.03 公差(0.01~0.03)
lr/mm
3
αr/(°)
9
ω/(rad·s?1)
0.229
Tab.1Initial value of structural parameters of semi-rotary fluid damper
Fig.3Influence of structural parameters on damping torque when rotary valve is fully closed
Fig.4Sensitivity analysis of structural parameters when rotary valve is fully closed
Fig.5Influence of structural parameters on adjustable range of damping moment
Fig.6Sensitivity analysis of influence of structural parameters on adjustable range of damping moment
Fig.7Solution flow chart of NSGA-II
Fig.8Distribution and projection graph of Pareto solution set
序号
f1
f2
f3
1
?3.549
?8.139
1069.473
2
?3.584
?8.093
1067.954
3
?3.586
?8.198
1073.108
修正后
?3.635
?8.205
1067.954
Tab.2Selected Pareto solution
mm
序号
δ1U
δ2U
δ3U
dh
Ds
Dr
Ly
1
0.042
0.040
0.046
1.981
48.86
20.13
38.97
2
0.042
0.039
0.047
1.995
48.77
20.07
38.89
3
0.041
0.040
0.047
1.979
48.63
20.20
39.09
修正后
0.042
0.039
0.047
2
49
20
39
Tab.3Structural parameter values of selected Pareto solution
Fig.9Variation of damping torque with angular velocity
Fig.10Adjustable multiplier changes with angular velocity
Fig.11Diagram of damper prototype
Fig.12Diagram of damper test setup
Fig.13Results of damper performance tests
[1]
贾金亮. 共轴刚性双旋翼直升机操纵系统设计研究[D]. 南京: 南京航空航天大学, 2013: 1-5. JIA Jin-liang. Research on control system of coaxial rigid twin-rotor helicopter [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013: 1-5.
[2]
王放, 陈铭, 徐冠峰 直升机操纵杆振动特性测量与分析[J]. 航空动力学报, 2013, 28 (10): 2209- 2215 WANG Fang, CHEN Ming, XU Guan-feng Measurement and analysis of helicopter control stick vibration characteristics[J]. Journal of Aerospace Power, 2013, 28 (10): 2209- 2215
[3]
CAO X Y, YU M, ZHOU J, et al Modeling and experimental verification of a semi-rotary fluid damper based on an improved Kelvin model[J]. Arabian Journal for Science and Engineering, 2021, 46 (8): 7587- 7596
doi: 10.1007/s13369-021-05414-z
[4]
IMADUDDIN F, MAZLAN S A, ZAMZURI H A design and modelling review of rotary magnetorheological damper[J]. Materials and Design, 2013, 51: 575- 591
doi: 10.1016/j.matdes.2013.04.042
[5]
CAO X Y, YU M, ZHOU J, et al Modeling and control of helicopter flight control system with a controllable semi-rotary fluid viscous damper[J]. Alexandria Engineering Journal, 2022, 61 (12): 12725- 12738
doi: 10.1016/j.aej.2022.06.035
[6]
YANG C B, GAO X D, LIU Z F, et al. Modeling and analysis of the vibration characteristics of a new type of in-arm hydropneumatic suspension of a tracked vehicle [J]. Journal of Vibroengineering. 2016, 18(7): 4627-4646.
[7]
ARELEKATTI V N M, PETELINA N T, JOHNSON W B, et al. Design of a passive, shear-based rotary hydraulic damper for single-axis prosthetic knees [C]// 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Quebec: ASME, 2018: DETC2018-85962.
[8]
JEHLE G, FIDLIN A Hydrodynamic optimized vibration damper[J]. Journal of Sound and Vibration, 2019, 440: 100- 112
doi: 10.1016/j.jsv.2018.10.008
[9]
孙宝凤, 张新康, 李根道, 等 第Ⅱ类机器人混流装配线的平衡与排序联合决策[J]. 浙江大学学报: 工学版, 2022, 56 (6): 1097- 1106 SUN Bao-feng, ZHANG Xin-kang, LI Gen-dao, et al Joint decision-making of balancing and sequencing for type-Ⅱ robotic mixed-model assembly line[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (6): 1097- 1106
[10]
HU H N, JIAN Z, LIU X H, et al Multi-objective optimal design and performance of magnetorheological damper[J]. Materialwissenschaft und Werkstofftechnik, 2021, 52 (5): 540- 547
doi: 10.1002/mawe.202000175
[11]
ZHANG W, HAN B B, LI X, et al Multi-objective system optimization method and experimental validation of a centralized squeeze film damper using a cell mapping method considering dynamic constraints[J]. Engineering Optimization, 2021, 53 (6): 941- 961
doi: 10.1080/0305215X.2020.1759577
[12]
HAO Y D, HE Z C, LI G Y, et al Uncertainty analysis and optimization of automotive driveline torsional vibration with a driveline and rear axle coupled model[J]. Engineering Optimization, 2018, 50 (11): 1871- 1893
doi: 10.1080/0305215X.2017.1421952
[13]
XU F H, DONG D W, HUANG Y, et al A comprehensive optimal design method for magnetorheological dampers utilized in DMU power package[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2022, 236 (3): 533- 547
[14]
NGUYEN Q H, CHOI S B, WOO J K Optimal design of magnetorheological fluid-based dampers for front-loaded washing machines[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014, 228 (2): 294- 306
doi: 10.1177/0954406213485908
[15]
高晓东, 顾亮, 管继富, 等 履带车辆肘内式半主动油气悬挂性能研究[J]. 振动. 测试与诊断, 2015, 35 (5): 968- 972 GAO Xiao-dong, GU Liang, GUAN Ji-fu, et al Study on the performance of semi-active in-arm hydro-pneumatic suspension for tracked vehicle[J]. Journal of Vibration Measurement and Diagnosis, 2015, 35 (5): 968- 972
[16]
毛建中, 王路翔, 毛歅博, 等 节流方式对扭转减振器的影响[J]. 湖南大学学报: 自然科学版, 2012, 39 (5): 33- 37 MAO Jian-zhong, WANG Lu-xiang, MAO Yin-bo, et al Effect of the throttle on the torsion damp shock absorber[J]. Journal of Hunan University: Natural Sciences, 2012, 39 (5): 33- 37
[17]
HAMBY D M A review of techniques for parameter sensitivity analysis of environmental models[J]. Environmental Monitoring and Assessment, 1994, 32 (2): 135- 154
doi: 10.1007/BF00547132
[18]
JIANG M, RUI X T, ZHU W, et al Parameter sensitivity analysis and optimum model of the magnetorheological damper's Bouc-Wen model[J]. Journal of Vibration and Control, 2021, 27 (19/20): 2291- 2302
[19]
谢慧超, 姜潮, 张智罡, 等 基于区间分析的汽车平顺性优化[J]. 汽车工程, 2014, 36 (9): 1127- 1131 XIE Hui-chao, JIANG Chao, ZHANG Zhi-gang, et al Vehicle ride comfort optimization based on interval analysis[J]. Automotive Engineering, 2014, 36 (9): 1127- 1131
[20]
郝耀东, 何智成, 李光耀, 等 考虑公差的扭转动力吸振器不确定性优化设计[J]. 中国机械工程, 2018, 29 (14): 1645- 1652 HAO Yao-dong, HE Zhi-cheng, LI Guang-yao, et al Uncertain optimization of torsional vibration damper considering tolerant design[J]. China Mechanical Engineering, 2018, 29 (14): 1645- 1652
doi: 10.3969/j.issn.1004-132X.2018.14.002
[21]
JIANG M, RUI X T, YANG F F, et al Multi-objective optimization design for a magnetorheological damper[J]. Journal of Intelligent Material Systems and Structures, 2022, 33 (1): 33- 45
doi: 10.1177/1045389X211006907
[22]
SAINI R, CHANDRAMOHAN S, SUJATHA S, et al Design of bypass rotary vane magnetorheological damper for prosthetic knee application[J]. Journal of Intelligent Material Systems and Structures, 2021, 32 (9): 931- 942
doi: 10.1177/1045389X20942577
[23]
郑玲, 牛伯瑶, 李以农, 等 基于遗传算法的汽车磁流变减振器多目标优化[J]. 汽车工程, 2016, 38 (7): 871- 877 ZHENG Ling, NIU Bo-yao, LI Yi-nong, et al Multi-objective optimization of vehicle MR damper based on genetic algorithm[J]. Automotive Engineering, 2016, 38 (7): 871- 877
doi: 10.3969/j.issn.1000-680X.2016.07.013
[24]
董小闵, 丁飞耀, 管治, 等 面向高速的磁流变缓冲器多目标优化设计及性能研究[J]. 机械工程学报, 2014, 50 (5): 127- 134 DONG Xiao-min, DING Fei-yao, GUAN Zhi, et al Multi-objective optimization and performance research of magneto-rheological absorber under high speed[J]. Journal of Mechanical Engineering, 2014, 50 (5): 127- 134
doi: 10.3901/JME.2014.05.127