A resource allocation model was established based on game theory, aiming at the problem of resource allocation competition between storage and distribution subsystems in an aircraft final assembly logistics distribution system. The storage subsystems such as package storage area in parts warehouse, line warehouse and station storage area, and the distribution subsystems such as truck and automatic guided vehicle (AGV) were abstracted as game players respectively. Two utility value indexes such as resource input cost and competition efficiency were introduced to evaluate the game strategy combination. A particle swarm optimization algorithm with dynamic adjustment of strategy space was proposed to solve the model, and the feasibility information of the current game strategy combination was effectively utilized to accelerate the utility value calculation. The numerical experiments results show that the obtained resource allocation scheme has Nash equilibrium and the adaptability to increased aircraft production capacity, and the proposed algorithm has better performance in Nash equilibrium, total input cost and single iteration time than comparison algorithms.
Yulong DONG,Lu CHEN,Zhongkai BAO. Resource allocation of aircraft final assembly logistics distribution system based on game theory. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 120-129.
Fig.1Layout of final assembly workshop and parts warehouse
Fig.2Distribution process of aircraft final assembly logistics distribution system
Fig.3Game relationship diagram
Fig.4Particle coding scheme
Fig.5Flow chart of proposed particle swarm optimization algorithm
$ \left| I \right| $
算法
$ N $
$ f $
$ S $/千元
$ K $
$ {t}_{{\mathrm{C}}}/{\mathrm{s}} $
$ t/{\mathrm{s}} $
$ G_f/{\text{%}} $
$ G_S/{\text{%}} $
$ G_K/{\text{%}} $
$ G_{{t}_{{\mathrm{C}}}}/{\text{%}} $
$ G_t/{\text{%}} $
100
PSO
{80,24,12,1,7}
0.10
912
23
1.24
0.05
0.00
0.00
17.39
?8.06
?20.00
BreedPSO
{80,24,12,1,7}
0.10
912
25
1.15
0.05
0.00
0.00
8.00
?0.87
?20.00
SimuAPSO
{80,24,12,1,7}
0.10
912
25
1.17
0.05
0.00
0.00
8.00
?2.56
?20.00
本研究
{80,24,12,1,7}
0.10
912
27
1.14
0.04
—
—
—
—
—
200
PSO
{180,20,20,1,3}
0.10
1356
24
9.50
0.40
?100.00
3.54
62.50
?6.21
?42.50
BreedPSO
{180,28,20,1,3}
0.00
1404
26
7.13
0.27
0.00
0.00
50.00
24.96
?14.81
SimuAPSO
{180,20,20,1,3}
0.10
1356
31
7.88
0.25
?100.00
3.54
25.81
13.07
?8.00
本研究
{180,28,20,1,3}
0.00
1404
39
8.91
0.23
—
—
—
—
—
300
PSO
{280,36,32,1,3}
0.10
2076
48
27.29
0.57
?100.00
?19.08
10.42
?29.83
?36.85
BreedPSO
{280,20,20,1,8}
0.10
1716
31
21.00
0.68
?100.00
?2.10
70.97
?8.81
?47.06
SimuAPSO
{280.20,20,1,5}
0.00
1680
45
25.37
0.56
0.00
0.00
17.78
?24.52
?35.71
本研究
{280,20,20,1,5}
0.00
1680
53
19.15
0.36
—
—
—
—
—
400
PSO
{298,60,24,1,1}
0.10
2034
30
70.44
2.35
?100.00
?3.83
63.33
?72.25
?82.98
BreedPSO
{281,72,20,1,10}
0.11
2055
30
43.82
1.46
?100.00
?4.82
63.33
?55.39
?72.60
SimuAPSO
{292,64,20,1,3}
0.00
1956
32
59.81
1.87
0.00
0.00
53.13
?67.32
?78.61
本研究
{292,64,20,1,3}
0.00
1956
49
19.55
0.40
—
—
—
—
—
500
PSO
{252,104,68,1,3}
0.22
3372
33
133.66
4.05
?54.55
?21.62
54.55
?66.74
?78.52
BreedPSO
{292,68,40,3,10}
0.13
2844
39
103.96
2.67
?23.08
?7.07
30.77
?57.23
?67.42
SimuAPSO
{296,68,44,1,5}
0.10
2664
44
129.69
2.95
0.00
?0.79
15.91
?65.72
?70.51
本研究
{281,72,44,1,5}
0.10
2643
51
44.46
0.87
—
—
—
—
—
600
PSO
{299,72,64,2,10}
0.11
3417
34
229.27
6.74
?9.09
?14.93
41.18
?69.96
?78.78
BreedPSO
{294,76,52,1,7}
0.10
2946
40
160.49
4.01
0.00
?1.32
20.00
?57.09
?64.34
SimuAPSO
{294,92,48,1,10}
0.10
2970
45
226.84
5.04
11.11
?2.12
6.67
?69.64
?71.63
本研究
{285,108,44,1,8}
0.10
2907
48
68.87
1.43
—
—
—
—
—
700
PSO
{339,32,64,2,10}
0.11
3297
33
330.45
10.01
?100.00
?23.93
78.79
?46.92
?70.33
BreedPSO
{347,76,32,1,10}
0.10
2601
36
262.04
7.28
?100.00
?3.58
63.89
?33.06
?59.20
SimuAPSO
{347,100,20,1,6}
0.11
2373
39
356.77
9.15
?100.00
5.69
51.28
?50.83
?67.54
本研究
{348,76,32,1,2}
0.00
2508
59
175.42
2.97
—
—
—
—
—
812
PSO
{352,32,52,2,4}
0.13
2940
38
365.65
9.62
?100.00
?25.82
36.84
?19.73
?41.37
BreedPSO
{396,20,32,1,10}
0.10
2412
37
302.97
8.19
?100.00
?9.58
40.54
?3.13
?31.14
SimuAPSO
{399,44,20,1,5}
0.00
2181
44
382.62
8.70
0.00
0.00
18.18
?23.29
?35.17
本研究
{399,44,20,1,5}
0.00
2181
52
293.50
5.64
—
—
—
—
—
Tab.1Optimization and solving speed analysis of proposed particle swarm optimization algorithm
Fig.6Variation of utility value obtained by unilateral change of strategy of game players
TP/d
U%
料包存储区
线边库
工位暂存区
14
51.72
76.07
51.45
13
54.30
79.88
54.02
12
57.15
84.08
56.86
11
60.33
88.75
60.02
10
63.88
93.98
63.55
Tab.2Storage resource utilization rate under different production takts
[1]
ZHENG Y, HAN D, NI Y, et al Research and application of bottom-up route-based product data conformity inspection approach for civil aircraft[J]. International Journal of Computer Integrated Manufacturing, 2014, 27 (6): 591- 607
doi: 10.1080/0951192X.2013.834464
[2]
陆志强, 胡鑫铭, 杜鑫 物料配送与线边存储集成决策模型与算法[J]. 浙江大学学报: 工学版, 2018, 52 (7): 1354- 1363 LU Zhiqiang, HU Xinming, DU Xin Integrated modeling and algorithm of material delivery and line-side storage problem[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (7): 1354- 1363
[3]
朱永国, 李俊杰, 刘春锋, 等 基于正态模糊时间窗约束的飞机装配物料配送路径规划[J]. 中国机械工程, 2017, 28 (21): 2534- 2541 ZHU Yongguo, LI Junjie, LIU Chunfeng, et al Aircraft assembly material delivery path planning based on normal fuzzy time window constraints[J]. China Mechanical Engineering, 2017, 28 (21): 2534- 2541
[4]
段胜文. 飞机脉动总装线生产物流布局方法研究[D]. 南京: 南京航空航天大学, 2016: 1–66. DUAN Shengwen. Research on the production logistics layout method of the aircraft pulse final assembly line [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 1–66.
[5]
马小丽. 飞机总装配生产线优化设计研究[D]. 杭州: 浙江大学, 2017: 1–60. MA Xiaoli. Research on optimal design for aircraft final assembly line [D]. Hangzhou: Zhejiang University, 2017: 1–60.
[6]
吴怡薇, 陆志强 飞机移动装配线资源水平问题的建模研究[J]. 工业工程与管理, 2017, 22 (1): 95- 101 WU Yiwei, LU Zhiqiang Modeling resource leveling problem for aircraft moving assembly line[J]. Industrial Engineering and Management, 2017, 22 (1): 95- 101
[7]
鲍中凯, 裘柯钧, 陈璐 考虑工时可变的飞机总装资源配置与作业调度[J]. 计算机集成制造系统, 2022, 28 (5): 1424- 1434 BAO Zhongkai, QIU Kejun, CHEN Lu Resource allocation and process scheduling problem of aircraft final assembly considering variable processing time[J]. Computer Integrated Manufacturing Systems, 2022, 28 (5): 1424- 1434
[8]
周韶武, 胡晓兵, 彭正超, 等 基于Petri网和Witness的SMT生产物流系统仿真及优化[J]. 现代制造工程, 2020, (11): 99- 105 ZHOU Shaowu, HU Xiaobing, PENG Zhengchao, et al Modeling and simulation optimization of SMT production logistics system based on Petri net and Witness[J]. Modern Manufacturing Engineering, 2020, (11): 99- 105
[9]
LI G Z, YANG S L, XU Z G, et al Resource allocation methodology based on object-oriented discrete event simulation: a production logistics system case study[J]. CIRP Journal of Manufacturing Science and Technology, 2020, 31: 394- 405
doi: 10.1016/j.cirpj.2020.07.001
[10]
WU S Q, XIANG W T, LI W D, et al Dynamic scheduling and optimization of AGV in factory logistics systems based on digital twin[J]. Applied Sciences, 2023, 13 (3): 1762
doi: 10.3390/app13031762
[11]
陈炫锐, 陈庆新, 毛宁, 等 多层车间中自动存取系统的AGV配置优化[J]. 计算机集成制造系统, 2023, 29 (5): 1562- 1575 CHEN Xuanrui, CHEN Qingxin, MAO Ning, et al AGV configuration optimization of autonomous vehicle storage and retrieval system in multi-floor workshop[J]. Computer Integrated Manufacturing Systems, 2023, 29 (5): 1562- 1575
[12]
刘雪梅, 刘涛, 顾佳巍, 等 随机型装配线平衡与缓冲区配置集成优化[J]. 同济大学学报: 自然科学版, 2018, 46 (8): 1098- 1106 LIU Xuemei, LIU Tao, GU Jiawei, et al Simultaneous balancing and buffer allocation for assembly line with stochastic task times[J]. Journal of Tongji University: Natural Science, 2018, 46 (8): 1098- 1106
[13]
TANG H T, CHENG X Y, JIANG W G, et al Research on equipment configuration optimization of AGV unmanned warehouse[J]. IEEE Access, 2021, 9: 47946- 47959
doi: 10.1109/ACCESS.2021.3066622
[14]
杨波. 基于博弈论的云计算资源配置优化方法研究[D]. 长沙: 湖南大学, 2018: 1–112. YANG Bo. Optimization of research configuration for cloud computing based on game theoretical methods [D]. Changsha: Hunan University, 2018: 1–112.
[15]
毕晓君, 郭柳, 胡菘益 基于非合作博弈论的CoMP-JP资源分配算法[J]. 中南大学学报: 自然科学版, 2015, 46 (8): 2906- 2913 BI Xiaojun, GUO Liu, HU Songyi Resource allocation algorithm for CoMP-JP based on non-cooperative game theory[J]. Journal of Central South University: Science and Technology, 2015, 46 (8): 2906- 2913
[16]
刘一鸣, 盛文 相控阵雷达搜索和跟踪资源博弈分配策略[J]. 浙江大学学报: 工学版, 2020, 54 (10): 1883- 1891 LIU Yiming, SHENG Wen Game strategy of resource allocation for phased array radar search and tracking[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (10): 1883- 1891
[17]
王金凤, 杜雪珂, 翟雪琪, 等 基于合作博弈的煤矿生产物流系统资源配置研究[J]. 工矿自动化, 2015, 41 (12): 25- 30 WANG Jinfeng, DU Xueke, ZHAI Xueqi, et al Research of resource allocation of coal mine production logistics system based on cooperative game[J]. Industry and Mine Automation, 2015, 41 (12): 25- 30
[18]
FANG F, LIU S T, BASAL A, et al. Introduction to game theory [M]// KAMHOUA C A, KIEKINTVELD C D, FANG F, et al. Game theory and machine learning for cyber security . Hoboken: John Wiley & Sons, 2021: 21–46.
MENG Y F, HE J H, LUO S C, et al An improved predator-prey particle swarm optimization algorithm for Nash equilibrium solution[J]. PLOS ONE, 2021, 16 (11): e0260231
doi: 10.1371/journal.pone.0260231
[21]
付建林, 张恒志, 张剑, 等 自动导引车调度优化研究综述[J]. 系统仿真学报, 2020, 32 (9): 1664- 1675 FU Jianlin, ZHANG Hengzhi, ZHANG Jian, et al Review on AGV scheduling optimization[J]. Journal of System Simulation, 2020, 32 (9): 1664- 1675
[22]
VIVALDINI K C T, ROCHA L F, BECKER M, et al. Comprehensive review of the dispatching, scheduling and routing of AGVs [C]// The 11th Portuguese Conference on Automatic Control . Porto: Springer, 2015: 505–514.
[23]
谭叶青, 李萍, 李潇, 等 基于BreedPSO算法及交叠法的紧凑型大角度双自由曲面透镜设计[J]. 光学技术, 2018, 44 (1): 123- 128 TAN Yeqing, LI Ping, LI Xiao, et al Optimization of double freeform-surface lens with large view angle based on BreedPSO algorithm and overlapping method[J]. Optical Technique, 2018, 44 (1): 123- 128
[24]
黄炯, 艾剑良, 万婧 基于模拟退火粒子群算法的飞机气动参数辨识[J]. 复旦学报: 自然科学版, 2016, 55 (3): 336- 341 HUANG Jiong, AI Jianliang, WAN Jing Identification of aircraft aerodynamic parameters based on SA-PSO algorithm[J]. Journal of Fudan University: Natural Science, 2016, 55 (3): 336- 341