Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (5): 960-966    DOI: 10.3785/j.issn.1008-973X.2024.05.009
    
Resource allocation strategy for cognitive industrial internet of things in dynamic uncertain scenarios
Jiaojun LI1(),Tao YU1(),Jihua ZHOU2,*(),Fan YANG1,Tao ZHAO2,Tianshu WU3,Zilin MA4
1. School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing 400054, China
2. Aerospace New Generation Communications Limited Company, Chongqing 400031, China
3. Chongqing Zhongke Yuncong Technology Limited Company, Chongqing 401331, China
4. Chongqing Buneng Ruiyuan Energy Storage Technology Research Institute, Chongqing 401120, China
Download: HTML     PDF(1199KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A cognitive industrial internet of things (CIIoT) resource allocation strategy was proposed to address the delay guarantee challenge of CIIoT services in dynamic and uncertain scenarios. A delay model based on CIIoT delay-sensitive services was constructed, and a rate-analytic solution for guaranteeing the delay demand of the services was derived. A CIIoT resource optimization model with the objective of maximizing network throughput was established based on the delay model, which considered the transmit power constraints of the base stations, the interference constraints between devices, and service transmission delay guarantee constraints under dynamic and uncertain environment. It is difficult to solve the model due to the dynamic uncertainty of the model. The robust optimization theory was adopted to transform uncertain parameter constraints into deterministic constraint problems, and a resource allocation strategy for CIIoT in dynamic uncertainty scenarios was proposed. The simulation results show that the proposed algorithm effectively guarantees the delay requirements of services and improves network throughput in dynamic and uncertain environments.



Key wordsdynamic and uncertain scenario      cognitive industrial internet of things (CIIoT)      delay guarantee      resource allocation     
Received: 29 June 2023      Published: 26 April 2024
CLC:  TN 929  
Fund:  重庆市自然科学基金资助项目(cstc2021jcyj-msxmX0251);重庆市自然科学基金创新发展联合基金资助项目(CSTB2023NSCQ-LMX0014);重庆市教育委员会科学技术研究计划资助项目(KJQN202301135,KJQN202201157);重庆理工大学国家自然科学基金和社会科学基金项目培育计划资助项目(2022PYZ017);重庆市巴南区科技资助项目(KY202208153976019);重庆市青少年创新人才培养雏鹰计划资助项目(CY230909,CY230908);重庆理工大学研究生教育高质量发展行动计划资助成果(gzlcx20233082);重庆理工大学科研创新团队培育计划基金资助项目(2023TDZ003).
Corresponding Authors: Jihua ZHOU     E-mail: ljj1987084@163.com;1826273183@qq.com;zjh20221012@163.com
Cite this article:

Jiaojun LI,Tao YU,Jihua ZHOU,Fan YANG,Tao ZHAO,Tianshu WU,Zilin MA. Resource allocation strategy for cognitive industrial internet of things in dynamic uncertain scenarios. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 960-966.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.05.009     OR     https://www.zjujournals.com/eng/Y2024/V58/I5/960


动态不确定场景下认知工业物联网的资源分配策略

针对动态不确定场景下认知工业物联网(CIIoT)业务的时延保障难题,提出动态不确定场景下保障业务时延需求的CIIoT资源分配策略. 构建基于时延敏感业务的时延模型,推导保障业务时延需求的速率解析解. 基于时延模型建立以最大化网络吞吐量为目标的CIIoT资源优化模型,该模型考虑在动态不确定环境下联立基站发射功率约束、设备之间的干扰约束和业务传输时延保障约束. 由于该模型存在动态不确定性,导致模型难以求解,采用鲁棒优化理论将不确定参数约束转化为确定性约束问题,提出在动态不确定场景下CIIoT的资源分配策略. 仿真结果表明,所提算法在动态不确定环境下有效地保障了业务的时延需求,提高了网络吞吐量.


关键词: 动态不确定场景,  认知工业物联网 (CIIoT),  时延保障,  资源分配 
Fig.1 Dynamic uncertain cognitive IoT scenarios
参数数值参数数值
$ \sigma^{2} $/mW5${ W } $/MHz10
$ {R}^{ \rm{th }} $/(bits·Hz?15$ \xi_{{{n}}} $0.2
$ I_{{{n}}}^{ {{\rm{th}} }} $/mW10$ {{{C}}_{{\text{MBS}}}} $/m500
$ \delta $0.2$ {{{C}}_{{\text{FBS}}}} $/m50
$ \tau $0.3
Tab.1 Simulation parameter settings for random model allocation algorithm
Fig.2 Relationship between CIIoTD total IE and different channel estimation errors
Fig.3 Relationship between throughput of CIIoTD and delay requirement threshold of delay-sensitive service
Fig.4 Relationship between total IE of CIIoTD and interference threshold $ I_{{{n}}}^{{\rm{t h}}} $
Fig.5 Relationship between total EE of CIIoTD and interference threshold
[1]   HUANG Jie, YANG Fan, CHAKRABORTY C, et al Opportunistic capacity based resource allocation for 6G wireless systems with network slicing[J]. Future Generation Computer Systems, 2023, 140: 390- 401
doi: 10.1016/j.future.2022.10.032
[2]   吴超, 刘元安, 吴帆, 等 移动性受限物联网应用中基于图论的高效数据采集策略[J]. 浙江大学学报:工学版, 2018, 52 (8): 1444- 1451
WU Chao, LIU Yuanan, WU Fan, et al Efficient data collection strategy based on graph theory in mobility-constrained IoT applications[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (8): 1444- 1451
[3]   ZHANG Q, GUI L, HOU F, et al Dynamic task offloading and resource allocation for mobile-edge computing in dense cloud RAN[J]. IEEE Internet of Things Journal, 2020, 7 (4): 3282- 3299
doi: 10.1109/JIOT.2020.2967502
[4]   LIU X, HU S, LI M, et al Energy-efficient resource allocation for cognitive industrial Internet of Things with wireless energy harvesting[J]. IEEE Transactions on Industrial Informatics, 2020, 17 (8): 5668- 5677
[5]   LIANG F, YU W, LIU X, et al Toward deep Q-network-based resource allocation in industrial Internet of Things[J]. IEEE Internet of Things Journal, 2021, 9 (12): 9138- 9150
[6]   YU P, YANG M, XIONG A, et al Intelligent-driven green resource allocation for industrial Internet of Things in 5G heterogeneous networks[J]. IEEE Transactions on Industrial Informatics, 2020, 18 (1): 520- 530
[7]   JIE Y, GUO C, CHOO K K R, et al Game-theoretic resource allocation for fog-based industrial Internet of Things environment[J]. IEEE Internet of Things Journal, 2020, 7 (4): 3041- 3052
doi: 10.1109/JIOT.2020.2964590
[8]   CHEN Y, LIU Z, ZHANG Y, et al Deep reinforcement learning-based dynamic resource management for mobile edge computing in industrial Internet of Things[J]. IEEE Transactions on Industrial Informatics, 2020, 17 (7): 4925- 4934
[9]   LIU X, ZHANG X NOMA-based resource allocation for cluster-based cognitive industrial Internet of Things[J]. IEEE Transactions on Industrial Informatics, 2019, 16 (8): 5379- 5388
[10]   SUN W, SONG Q, ZHAO J, et al Adaptive resource allocation in SWIPT-enabled cognitive IoT networks[J]. IEEE Internet of Things Journal, 2021, 9 (1): 535- 545
[11]   YU Y, LIU S, YEOH P L, et al LayerChain: a hierarchical edge-cloud blockchain for large-scale low-delay Industrial Internet of Things applications[J]. IEEE Transactions on Industrial Informatics, 2020, 17 (7): 5077- 5086
[12]   ZHANG K, PENG M, SUN Y Delay-optimized resource allocation in fog-based vehicular networks[J]. IEEE Internet of Things Journal, 2020, 8 (3): 1347- 1357
[13]   ZHANG C, SUN X, ZHANG J, et al Throughput optimization with delay guarantee for massive random access of M2M communications in industrial IoT[J]. IEEE Internet of Things Journal, 2019, 6 (6): 10077- 10092
doi: 10.1109/JIOT.2019.2935548
[14]   LU Y, YANG L, YANG S X, et al An intelligent deterministic scheduling method for ultralow latency communication in edge enabled industrial Internet of Things[J]. IEEE Transactions on Industrial Informatics, 2022, 19 (2): 1756- 1767
[15]   VALINEJAD J, MILI L, XU Y. A power flow method for power distribution systems based on a sinusoidal transformation to a convex quadratic form [C]// IEEE Power and Energy Society General Meeting . Washington, DC: IEEE, 2021: 1-25.
[16]   ZHONG W, XIE K, LIU Y, et al Chance constrained scheduling and pricing for multi-service battery energy storage[J]. IEEE Transactions on Smart Grid, 2021, 12 (6): 5030- 5042
doi: 10.1109/TSG.2021.3109140
[17]   BOYD S, VANDENBERGHE L. Convex optimization [M]. Cambridge: Cambridge University Press, 2004.
[18]   KUANG Z, LIU G, LI G, et al Energy efficient resource allocation algorithm in energy harvesting-based D2D heterogeneous networks[J]. IEEE Internet of Things Journal, 2018, 6 (1): 557- 567
[1] Chong-he LIU,Guan-ding YU,Sheng-li LIU. Hierarchical federated learning based on wireless D2D networks[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 892-899.
[2] Xin-tong ZHOU,Kun XIAO. Resource allocation algorithm for wireless energy harvesting cooperative network integrating uplink and downlink[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2544-2552.
[3] Jun-jie CHEN,Hong-jun LI,Zhang-hua CAO. Performance-aware resource allocation algorithm for core network control plane[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1782-1787.
[4] Chen SUN,Zhe-yi WU,Jian-tao YUAN. Energy saving and channel access algorithm of unlicensed D2D networks in power Internet of things[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1867-1873.
[5] Yi-ming LIU,Wen SHENG. Game strategy of resource allocation for phased array radar search and tracking[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1883-1891.
[6] BAI Ru-fan, LEI Jian-kun, ZHANG Liang. Towards resource allocation optimization for big data test field application[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1225-1232.
[7] ZHANG Xin-xin, XU Ke, ZHONG Yi-Feng, SU Hui. Evolutionary game analysis on cooperative behaviors of internet service providers[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1214-1224.