Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (12): 2544-2552    DOI: 10.3785/j.issn.1008-973X.2023.12.021
    
Resource allocation algorithm for wireless energy harvesting cooperative network integrating uplink and downlink
Xin-tong ZHOU(),Kun XIAO*()
School of Electronic and Information Engineering, Guangxi Normal University, Guilin 541004, China
Download: HTML     PDF(1149KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The energy-efficient resource allocation algorithm was studied in the wireless energy harvesting (EH) cooperative network, in order to improve and balance the energy efficiency between uplink and downlink of the time division duplex system. A cooperative network system model considering wireless EH, spectrum sharing and system power constraints was established. Based on the established model, the system’s optimization problems of harvesting and traditional energy efficiency were formed, which integrating uplink and downlink, power constraints, bandwidth constraints and rate matching for uplink and downlink. The optimal solutions of resource allocation were obtained by mathematical analysis of the optimization problems, including the optimal transmit power of the source node, the relay node and the destination node, the optimal bandwidth allocation of the uplink and downlink, the optimal power splitting of the EH node and the optimal system energy efficiency. A resource allocation algorithm based on maximization of harvesting energy efficiency and maximization of energy efficiency was obtained. Monte Carlo simulation was carried out based on the model and the algorithm, and the algorithm was compared with the literature algorithms. Simulation results show that the algorithm effectively improves the harvesting energy efficiency and traditional energy efficiency by comprehensively optimizing resource allocation of uplink and downlink.



Key wordswireless cooperative network      energy harvesting (EH)      resource allocation      spectrum sharing      energy efficiency     
Received: 05 February 2023      Published: 27 December 2023
CLC:  TN 925  
Fund:  国家自然科学基金资助项目(61861006);广西自然科学基金资助项目(2018GXNSFAA050062)
Corresponding Authors: Kun XIAO     E-mail: xt213000@126.com;xiaokun@gxnu.edu.cn
Cite this article:

Xin-tong ZHOU,Kun XIAO. Resource allocation algorithm for wireless energy harvesting cooperative network integrating uplink and downlink. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2544-2552.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.12.021     OR     https://www.zjujournals.com/eng/Y2023/V57/I12/2544


综合上下行链路的无线能量收集协作网络资源分配

为了提高和平衡时分双工系统上下行链路之间的能效,在无线能量收集(EH)协作网络中开展节能资源分配算法研究. 建立考虑无线能量收集、频谱共享、系统功率受限的协作网络模型;基于所建模型,形成综合上下行链路、功率约束、带宽约束和上下行速率匹配的优化问题,分别优化系统的绿色能效和传统能效. 对优化问题进行数学分析,得到资源分配的最优解,即源节点、中继节点和目的节点的最优发射功率,上下行链路最优的带宽分配,能量收集节点最优的功率分割以及最优的系统能效;归纳得到分别基于系统绿色能效最大化和基于系统能效最大化的资源分配算法. 对所建模型与所得资源分配算法开展蒙特卡洛仿真分析,将所得算法与文献算法进行对比. 仿真结果表明,通过综合优化系统上下行链路的资源分配,所得算法有效提升了绿色能效和传统能效.


关键词: 无线协作网络,  能量收集(EH),  资源分配,  频谱共享,  能量效率 
Fig.1 Energy harvesting cooperative relay network
Fig.2 Spectrum division of multi-relay uplink and downlink
Fig.3 Relationship between system energy efficiency and total power of different algorithms
Fig.4 Relationship between system energy efficiency and bandwidth allocation coefficient
Fig.5 Relationship between system energy efficiency and numbers of relay node of different algorithms
Fig.6 Relationship between system energy efficiency and rate ratio of downlink to uplink of different algorithms
Fig.7 Relationship between system energy efficiency and average channel gain of different algorithms
[1]   ALQASIR A M, KAMAL A Cooperative small cell HetNets with dynamic sleeping and energy harvesting[J]. IEEE Transactions on Green Communications and Networking, 2020, 4 (3): 774- 782
doi: 10.1109/TGCN.2020.2985496
[2]   LU W, SI P, LIU X, et al OFDM based bidirectional multi-relay SWIPT strategy for 6G IoT networks[J]. China Communications, 2020, 17 (12): 80- 91
doi: 10.23919/JCC.2020.12.006
[3]   李国权, 徐勇军, 陈前斌 基于干扰效率多蜂窝异构无线网络最优基站选择及功率分配算法[J]. 电子与信息学报, 2020, 42 (4): 957- 964
LI Guo-quan, XU Yong-jun, CHEN Qian-bin Interference efficiency-based station selection and power allocation algorithm for multi-cell heterogeneous wireless networks[J]. Journal of Electronics and Information Technology, 2020, 42 (4): 957- 964
doi: 10.11999/JEIT190419
[4]   王雪, 刘京, 孙佳妮, 等 基于谱聚类的异构蜂窝超密集网络高能效资源分配算法[J]. 通信学报, 2021, 42 (7): 162- 175
WANG Xue, LIU Jing, SUN Jia-ni, et al Spectral clustering-based energy-efficient resource allocation algorithm in heterogeneous cellular ultra-dense network[J]. Journal on Communications, 2021, 42 (7): 162- 175
[5]   孙晨, 吴哲奕, 袁建涛 电力物联网中节能的免许可D2D接入算法设计[J]. 浙江大学学报: 工学版, 2020, 54 (10): 1867- 1873
SUN Chen, WU Zhe-yi, YUAN Jian-tao Energy saving and channel access algorithm of unlicensed D2D networks in power Internet of things[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (10): 1867- 1873
[6]   HAN S, LI L, LI X, et al Joint relay selection and power allocation for time-varying energy harvesting-driven UASNs: a stratified reinforcement learning approach[J]. IEEE Sensors Journal, 2022, 22 (20): 20063- 20072
doi: 10.1109/JSEN.2022.3203028
[7]   ZHUANG Y, LI X, JI H, et al Exploiting hybrid SWIPT in ambient backscatter communication-enabled relay networks: optimize power allocation and time scheduling[J]. IEEE Internet of Things Journal, 2022, 9 (24): 24655- 24668
doi: 10.1109/JIOT.2022.3193104
[8]   GU Q, WANG G, FAN R, et al Optimal resource allocation in wireless powered relay networks with nonlinear energy harvesters[J]. IEEE Wireless Communications Letters, 2020, 9 (3): 371- 375
doi: 10.1109/LWC.2019.2955696
[9]   LIU Y, WEN Z, BEAULIEU N C, et al Power allocation for SWIPT in full-duplex AF relay interference channels using game theory[J]. IEEE Communications Letters, 2020, 24, (3): 608- 611
doi: 10.1109/LCOMM.2019.2963640
[10]   EUTTAMARAJA S, NG Y H, TAN C K Energy-efficient joint power allocation and energy cooperation for hybrid-powered comp-enabled HetNet[J]. IEEE Access, 2020, 8: 29169- 29175
doi: 10.1109/ACCESS.2020.2972910
[11]   XU S, SONG X, XIA L, et al. Optimal power allocation for non-linear EH cooperative network with multiple eavesdroppers [C]// IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. Singapore: IEEE, 2020: 3913-3917.
[12]   LIU X, LIU X, JIA M, et al Simultaneous wireless information and power transfer based on time-frequency block allocation in OFDM cooperative communication system[J]. IEEE Systems Journal, 2022, 16 (3): 4827- 4830
doi: 10.1109/JSYST.2021.3093572
[13]   CHEN J, ZHAO Y, XU Z, et al Resource allocation strategy for D2D-assisted edge computing system with hybrid energy harvesting[J]. IEEE Access, 2020, 8: 192643- 192658
doi: 10.1109/ACCESS.2020.3032033
[14]   SALIM M M, WANG D, LIU Y, et al Optimal resource and power allocation with relay selection for RF/RE energy harvesting relay-aided D2D communication[J]. IEEE Access, 2019, 7: 89670- 89686
doi: 10.1109/ACCESS.2019.2924026
[15]   OJO F K, AKANDE D O, SALLEH M F M Optimal power allocation in cooperative networks with energy-saving protocols[J]. IEEE Transactions on Vehicular Technology, 2020, 69 (5): 5079- 5088
doi: 10.1109/TVT.2020.2978576
[16]   XU S, SONG X Secure energy efficiency maximization for untrusted wireless-powered full-duplex relay networks under nonlinear energy harvesting[J]. IEEE Systems Journal, 2022, 16 (4): 5346- 5356
doi: 10.1109/JSYST.2021.3135515
[17]   PANG L, ZHAO H, ZHANG Y, et al Energy-efficient resource optimization for hybrid energy harvesting massive MIMO systems[J]. IEEE Systems Journal, 2022, 16 (1): 1616- 1626
doi: 10.1109/JSYST.2021.3074542
[18]   WEI X, ZHU Q Joint optimization of energy harvesting and information transmission for trapped user[J]. Wireless Networks, 2022, 28: 2937- 2950
doi: 10.1007/s11276-022-03006-9
[19]   MORTAZAVI S M, ASHTIANI F, MIRMOHSENI M, et al Optimal energy sharing for cooperative relaying in a random access network with energy harvesting nodes[J]. IEEE Transactions on Green Communications and Networking, 2021, 5 (1): 231- 242
doi: 10.1109/TGCN.2020.3020524
[20]   WANG S, XIA M H, WU Y C Space-time signal optimization for SWIPT: linear versus nonlinear energy harvesting model[J]. IEEE Communications Letters, 2018, 22 (2): 408- 411
[21]   NG D W K, LO E S, SCHOBER R Energy-efficient resource allocation for secure OFDMA Systems[J]. IEEE Transactions on Vehicular Technology, 2012, 61 (6): 2572- 2585
doi: 10.1109/TVT.2012.2199145
[22]   HAN Q N, YANG B, MIAO G, et al Backhaul-aware user association and resource allocation for energy-constrained HetNets[J]. IEEE Transactions on Vehicular Technology, 2017, 66 (1): 580- 593
[1] Chong-he LIU,Guan-ding YU,Sheng-li LIU. Hierarchical federated learning based on wireless D2D networks[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 892-899.
[2] Jun-jie CHEN,Hong-jun LI,Zhang-hua CAO. Performance-aware resource allocation algorithm for core network control plane[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1782-1787.
[3] Chen SUN,Zhe-yi WU,Jian-tao YUAN. Energy saving and channel access algorithm of unlicensed D2D networks in power Internet of things[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1867-1873.
[4] Yi-ming LIU,Wen SHENG. Game strategy of resource allocation for phased array radar search and tracking[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1883-1891.
[5] WU Chao, LIU Yuan-an, WU Fan, FAN Wen-hao, TANG Bi-hua. Efficient data gathering scheme in mobility-constrained internet of things with graph theory[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1444-1451.
[6] BAI Ru-fan, LEI Jian-kun, ZHANG Liang. Towards resource allocation optimization for big data test field application[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1225-1232.
[7] ZHANG Xin-xin, XU Ke, ZHONG Yi-Feng, SU Hui. Evolutionary game analysis on cooperative behaviors of internet service providers[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1214-1224.
[8] RUAN Fang, QIAN Xiao qian, ZHU Yao tai, WU Min li. Internal and external wall insulation effect on building energy efficiency with compartmental and intermittent energy consuming method[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 1-7.
[9] GONG Ben-kang, ZHANG Zhao-yang, YE Lu. Overlapped OFDMA:a novel spectrum sharing scheme[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(5): 860-866.
[10] SONG Jie, HOU Hong-ying, WANG Zhi, ZHU Zhi-liang. Improved energy-efficiency measurement model for cloud computing[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(1): 44-52.