Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (12): 2510-2519    DOI: 10.3785/j.issn.1008-973X.2024.12.010
    
Multi-objective workshop material distribution method based on improved NSGA-
Yan ZHAN(),Jieya CHEN,Weiguang JIANG,Jiansha LU,Hongtao TANG,Xinyu SONG,Lili XU,Saimiao LIU
College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
Download: HTML     PDF(743KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Addressing the inefficient distribution of materials in workshops, a multi-objective optimization model with the shortest distribution path and the smallest time window penalty value was established. A hybrid optimization algorithm, INSGA-Ⅱ, based on a fast non-dominated sorting genetic algorithm (NSGA-Ⅱ) was proposed. Density peak clustering (DPC) was adopted to initialize the population and reduce the problem size. To avoid falling into local optimums, the differential evolution (DE) algorithm was used in the genetic operation stage of NSGA-Ⅱ. The differential operation of mutation vectors was used with partial mapped crossover to accelerate the iteration speed and improve the population diversity. Different benchmark functions were solved with different sizes of arithmetic cases, and the results showed that the improved algorithm had better Pareto front compared to the traditional NSGA-Ⅱ algorithm. Meanwhile, the results of the proposed algorithm had better uniformity and diversity, and the solution time was shorter. Experimental results showed that the proposed algorithm generated , compared with the NSGA-Ⅱ and the multi-objective particle swarm optimization (MOPSO), the total distribution distance could be reduced by up to 26.65% and the total time window penalty could be reduced by up to 32.5%. The new method can effectively improve the distribution efficiency of workshop material.



Key wordsmaterial distribution      multi-objective optimization      density peak clustering      non-dominated sorting genetic algorithm      differential evolution     
Received: 07 November 2023      Published: 25 November 2024
CLC:  TP 391.9  
Fund:  浙江省尖兵研发攻关计划资助项目(2023C01063).
Cite this article:

Yan ZHAN,Jieya CHEN,Weiguang JIANG,Jiansha LU,Hongtao TANG,Xinyu SONG,Lili XU,Saimiao LIU. Multi-objective workshop material distribution method based on improved NSGA-. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2510-2519.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.12.010     OR     https://www.zjujournals.com/eng/Y2024/V58/I12/2510


基于改进NSGA-Ⅱ的多目标车间物料配送方法

针对车间物料配送效率低的问题,建立以配送路径最短和时间窗惩罚值最小为目标的物料配送多目标优化模型,提出基于快速非支配排序遗传算法(NSGA-Ⅱ)的混合优化算法INSGA-Ⅱ. 该算法采用密度峰值聚类(DPC)初始化种群,缩减问题规模;在NSGA-Ⅱ遗传操作阶段,采用差分进化(DE)算法,避免陷入局部最优;通过变异向量的差分操作与部分映射交叉加快迭代速度,同时提高种群多样性. 通过求解不同基准函数与不同规模算例验证算法的有效性,结果表明,与传统NSGA-Ⅱ算法相比,改进算法具有更优帕累托前沿,同时算法结果的均匀性和多样性更好,求解时间更短. 研究结果表明,新算法生成的结果更优;相比NSGA-Ⅱ算法、多目标粒子群算法(MOPSO),生成的总配送距离减少26.65%,总时间窗惩罚减少32.5%,能有效提高车间物料的配送效率.


关键词: 物料配送,  多目标优化,  密度峰值聚类,  非支配排序遗传,  差分进化 
Fig.1 Diagram of workshop layout
Fig.2 Diagram of DPC initialization population
Fig.3 Diagram of mutation operation
Fig.4 Diagram of crossover operation
Fig.5 Flowchart of INSGA-Ⅱ
Fig.6 Pareto front under different types of benchmark functions
基准函数HVC?A[(C?A)/A]/%C?B[(C?B)/B]/%
NSGA-ⅡMOPSOINSGA-Ⅱ
ZDT16.857.868.181.3316.260.323.91
ZDT26.087.177.421.3418.060.253.37
ZDT36.619.529.743.1332.140.222.26
ZDT66.007.127.161.1615.970.040.56
Tab.1 HV value with three algorithms under different types of benchmark functions
指标t1/st2/st3/st4/s
NSGA-ⅡMOPSO INSGA-ⅡNSGA-ⅡMOPSO INSGA-ⅡNSGA-ⅡMOPSO INSGA-ⅡNSGA-ⅡMOPSO INSGA-Ⅱ
均值17.1114.058.9617.3115.604.0711.4112.326.2915.5210.873.54
标准差1.130.770.564.531.230.100.480.700.091.680.540.09
标准误差0.360.240.181.430.390.030.150.220.030.530.170.03
Tab.2 Solve time with three algorithms under different types of benchmark functions
任务规模指标${Z_1}$/mD?E[(D?E)/D]/%${Z_2}$/sD?E[(D?E)/D]/%
NSGA-ⅡINSGA-ⅡNSGA-ⅡINSGA-Ⅱ
25均值965.20878.1087.109.029962.508906.701055.8010.60
标准差25.8117.867.9530.81434.40270.05164.3437.83
标准误差8.165.652.5130.81137.3785.4051.9737.83
50均值2168.002077.0091.004.2049825.0047339.002486.004.99
标准差32.1024.487.6223.731488.711082.50406.2127.29
标准误差10.157.742.4123.73470.77342.32128.4627.29
Tab.3 Solve results with algorithms under different types of task scales
Fig.7 Diagram of DPC clustering centers and clustering results for dataset R101
Fig.8 Pareto front of algorithm under different batches
批次指标NSGA-ⅡMOPSOINSGA-Ⅱ
${Z_1}$/m${Z_2}$/s${Z_1}$/m${Z_2}$/s${Z_1}$/m${Z_2}$/s
1均值643.205398.25736.606364.95540.304296.25
标准差22.82393.6133.69510.2311.50177.07
标准误差7.21124.4710.65161.353.6455.99
2均值428.202126.75432.102201.15348.301562.90
标准差15.92162.2015.56154.419.0481.68
标准误差5.0351.294.9248.832.8625.83
3均值265.10867.10273.00828.45233.60605.55
标准差11.7377.7611.6447.999.7432.81
标准误差3.7124.593.6815.183.0810.37
Tab.4 Results with three algorithms under three batches
[1]   LANZA G, PASSACANTANDO M, SCUTELLA M G Sequencing and routing in a large warehouse with high degree of product rotation[J]. Flexible Services and Manufacturing Journal, 2023, 35: 1206- 1255
doi: 10.1007/s10696-022-09463-w
[2]   FERREIRA K M, QUEIROZ T A D A simulated annealing based heuristic for a location-routing problem with two-dimensional loading constraints[J]. Applied Soft Computing, 2022, 118: 108443
doi: 10.1016/j.asoc.2022.108443
[3]   OSABA E, YANG X S, DIAZ F, et al A discrete firefly algorithm to solve a rich vehicle routing problem modelling a newspaper distribution system with recycling policy[J]. Soft Computing, 2017, 21 (18): 5295- 5308
doi: 10.1007/s00500-016-2114-1
[4]   罗亮, 陈慧璇, 吴张, 等 交通与天气状况双重作用下生鲜农产品冷链配送的VRPTW[J]. 系统工程, 2022, 40 (6): 67- 75
LUO Liang, CHEN Huixuan, WU Zhang, et al Vehicle routes planning of cold chain distribution for fresh agricultural product based on the dual functions of the traffic and weather conditions[J]. Systems Engineering, 2022, 40 (6): 67- 75
[5]   GHANNADPOUR S F, ZARRABI A Multi-objective heterogeneous vehicle routing and scheduling problem with energy minimizing[J]. Swarm and Evolutionary Computation, 2019, 44: 728- 747
doi: 10.1016/j.swevo.2018.08.012
[6]   ZHANG D F, CAI S F, YE F R, et al A hybrid algorithm for a vehicle routing problem with realistic constraints[J]. Information Sciences, 2017, 394: 167- 182
[7]   AKPINAR S Hybrid large neighbourhood search algorithm for capacitated vehicle routing problem[J]. Expert Systems with Applications, 2016, 61: 28- 38
doi: 10.1016/j.eswa.2016.05.023
[8]   FREY C M M, JUNGWIRTH A, FERY M, et al The vehicle routing problem with time windows and flexible delivery locations[J]. European Journal of Operational Research, 2023, 308 (3): 1142- 1159
doi: 10.1016/j.ejor.2022.11.029
[9]   KUO R J, LUTHFIANSYAH M F, MASRUROH N A, et al Application of improved multi-objective particle swarm optimization algorithm to solve disruption for the two-stage vehicle routing problem with time windows[J]. Expert Systems with Applications, 2023, 225: 120009
doi: 10.1016/j.eswa.2023.120009
[10]   ZHU X Y, JIANG L L, XIAO Y M Study on the optimization of the material distribution path in an electronic assembly manufacturing company workshop based on a Genetic Algorithm considering carbon Emissions[J]. Processes, 2023, 11 (5): 1500
doi: 10.3390/pr11051500
[11]   WU C, XIAO Y M, ZHU X Y, et al Study on multi-objective optimization of logistics distribution paths in smart manufacturing workshops based on time tolerance and low carbon emissions[J]. Processes, 2023, 11 (6): 1730
doi: 10.3390/pr11061730
[12]   SRIVASTAVA G, SINGH A, MALLIPEDDI R NSGA-Ⅱ with objective-specific variation operators for multi objective vehicle routing problem with time windows[J]. Expert Systems with Applications, 2021, 176: 114779
doi: 10.1016/j.eswa.2021.114779
[13]   YIN N Multiobjective optimization for vehicle routing optimization problem in low-carbon intelligent transportation[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 24 (11): 13161- 13170
[14]   STORN R, PRICE K Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11: 341- 359
doi: 10.1023/A:1008202821328
[15]   LIU M, YANG X N, CHU F, et al Energy-oriented bi-objective optimization for the tempered glass scheduling[J]. International Journal of Management Science, 2020, 90: 101995
[16]   STAMPFLI J A, ONG B H Y, OLSEN D G, et al Multi objective evolutionary optimization for multi-period heat exchanger network retrofit[J]. Energy, 2023, 281: 128175
doi: 10.1016/j.energy.2023.128175
[17]   XUAN H, LI W T, LI B An artificial immune differential evolution algorithm for scheduling a distributed heterogeneous flexible flowshop[J]. Applied Soft Computing, 2023, 145: 110563
doi: 10.1016/j.asoc.2023.110563
[18]   ZHANG G H, LIU B, WANG L, et al Distributed co-evolutionary memetic algorithm for distributed hybrid differentiation flowshop scheduling problem[J]. IEEE Transactions on Evolutionary Computation, 2022, 26 (5): 1043- 1057
doi: 10.1109/TEVC.2022.3150771
[19]   ZHANG G H, MA X J, WANG L, et al Elite archive-assisted adaptive memetic algorithm for a realistic hybrid differentiation flowshop scheduling problem[J]. IEEE Transactions on Evolutionary Computation, 2022, 26 (1): 100- 114
doi: 10.1109/TEVC.2021.3094542
[20]   XUE L, WANG X L A multi-objective discrete differential evolution algorithm for energy-efficient two-stage flow shop scheduling under time-of-use electricity tariffs[J]. Applied Soft Computing, 2023, 133: 109946
doi: 10.1016/j.asoc.2022.109946
[21]   GU Z Q, ZHU Y, WANG Y, et al Applying artificial bee colony algorithm to the multi-depot vehicle routing problem[J]. Software: Practice and Experience, 2022, 52 (3): 756- 771
doi: 10.1002/spe.2838
[22]   LO S C, CHUANG Y L Vehicle routing optimization with cross-docking based on an artificial immune system in logistics management[J]. Mathematics, 2023, 11 (4): 811
doi: 10.3390/math11040811
[23]   BARLETTA C, GARN W, TURNER C, et al Hybrid fleet capacitated vehicle routing problem with flexible monte-carlo tree search[J]. International Journal of Systems Science-Operations and Logistics, 2023, 10 (1): 2102265
doi: 10.1080/23302674.2022.2102265
[24]   WANG Y, RAN L Y, GUAN X Y, et al Collaborative multicenter vehicle routing problem with time windows and mixed deliveries and pickups[J]. Expert Systems with Applications, 2022, 197: 116690
doi: 10.1016/j.eswa.2022.116690
[25]   RODRIGUEZ A, LAIO A Clustering by fast search and find of density peaks[J]. Science, 2014, 344 (6191): 1492- 1496
doi: 10.1126/science.1242072
[26]   吴斌, 宋琰, 程晶, 等 基于密度峰值聚类的VRPTW问题研究[J]. 工业工程, 2020, 23 (5): 58- 66
WU Bin, SONG Yan, CHENG Jing, et al A research on vehicle routing problems with time windows based on density peak clustering[J]. Industrial Engineering, 2020, 23 (5): 58- 66
doi: 10.3969/j.issn.1007-7375.2020.05.008
[1] Yunchen ZHU,Mingjun CHENG,Xinwen ZHENG,Peili CEN,Xiangshuo XI,Shan HUANG,Chen HUA,Hai HUANG. Fuzzy location selection of urban emergency facilities based on optimized non-dominated sorting genetic algorithm III[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1832-1843.
[2] Qianlin YE,Wanliang WANG,Zheng WANG. Survey of multi-objective particle swarm optimization algorithms and their applications[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1107-1120.
[3] Yuqing LIU,Lizhen WANG,Peizhong YANG,Lisha PIAO. Multi-level co-location pattern mining algorithm based on grid spatial cliques[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 918-930.
[4] Zihao SHEN,Yuyu TANG,Hui WANG,Peiqian LIU,Kun LIU. Clustering and deep learning based trajectory privacy protection mechanism for Internet of vehicles[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 20-28.
[5] Xiao-yan CAO,Min YU,Jin ZHOU,Yun-zhi WANG. Multi-objective optimization design of adjustable rotary fluid damper parameter[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1439-1449.
[6] Huang LI,Hong-juan GE,Ying MA,Yong-shuai WANG. Parameters optimization design of dual-input dual-buck inverter system based on hyperplane NSGA-II[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 606-615.
[7] Ting-fang YU,Ling SONG. Performance analysis and optimization of supercritical CO2 Brayton cycle waste heat recovery system[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 404-414.
[8] Wan-liang WANG,Zhong-kui CHEN,Fei WU,Zheng WANG,Meng-jiao YU. Dynamic multi-objective optimization algorithm based on individual prediction[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2133-2146.
[9] Bao-feng SUN,Xin-kang ZHANG,Gen-dao LI,Jiao-jiao LIU. Joint decision-making of balancing and sequencing for type-II robotic mixed-model assembly line[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1097-1106.
[10] Wan-liang WANG,Ya-wen JIN,Jia-cheng CHEN,Guo-qing LI,Ming-zhi HU,Jian-hang DONG. Multi-objective particle swarm optimization algorithm with multi-role and multi-strategy[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 531-541.
[11] Jun-heng XU,Xiao-jun YANG,Bing LI. Design of wing mechanism with variable camber based on cross-spring flexural pivots[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 444-451, 509.
[12] Qi-lin DENG,Juan LU,Yong-hui CHEN,Jian FENG,Xiao-ping LIAO,Jun-yan MA. Optimization method of CNC milling parameters based on deep reinforcement learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2145-2155.
[13] Jun-jie CHEN,Hong-jun LI,Zhang-hua CAO. Performance-aware resource allocation algorithm for core network control plane[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1782-1787.
[14] Bao-qiang ZHU,Shu-hong WANG,Ze ZHANG,Peng-yu WANG,Fu-rui DONG. Prediction method of tunnel deformation based on time series and DEGWO-SVR model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2275-2285.
[15] Xiao-zhu LI,Wei-qing WANG. Bi-level robust game optimal scheduling of regional comprehensive energy system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 177-188.