Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (12): 2275-2285    DOI: 10.3785/j.issn.1008-973X.2021.12.007
    
Prediction method of tunnel deformation based on time series and DEGWO-SVR model
Bao-qiang ZHU(),Shu-hong WANG*(),Ze ZHANG,Peng-yu WANG,Fu-rui DONG
School of Resource and Civil Engineering, Northeastern University, Shenyang 110819, China
Download: HTML     PDF(1551KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Combining time series analysis, differential evolution (DE), grey wolf optimizer (GWO), and support vector regression (SVR), a new prediction model of tunnel deformation was proposed, in order to accurately predict tunnel deformation has the characteristics of non-equidistant and complex nonlinear. Firstly, non-equidistant data was processed equidistantly by cubic-spline function interpolation. Then based on the time series principle, the deformation were decomposed into the trend terms and stationary random terms. The proposed model was used to predict the two terms. Finally, the displacement components were superimposed to realize the prediction of the tunnel cumulative deformation. Taking the measured vault settlement of Xinglong Tunnel in Chongqing as an example, the vault settlement of the front ZK37+900 and ZK37+910 section was predicted and compared with existing models. Results showed that the root-mean-square error were 0.193 7 mm and 0.086 9 mm, the mean-absolute-percent error were 1.21 % and 0.55 %, and the correlation coefficient were 0.997 1 and 0.992 8. Compared with the existing models, the proposed model has higher prediction accuracy and smaller error, it has better applicability and application prospects.



Key wordstunnel engineering      tunnel deformation prediction      time series      differential evolution (DE)      grey wolf optimizer (GWO)      support vector regression (SVR)     
Received: 07 January 2021      Published: 31 December 2021
CLC:  U 459  
Fund:  国家自然科学基金资助项目(U1602232);中央高校基本科研业务专项资金资助项目(2101018);辽宁省重点研发计划资助项目(2019JH2/10100035)
Corresponding Authors: Shu-hong WANG     E-mail: zbq2289675237@163.com;wangshuhong@mail.neu.edu.cn
Cite this article:

Bao-qiang ZHU,Shu-hong WANG,Ze ZHANG,Peng-yu WANG,Fu-rui DONG. Prediction method of tunnel deformation based on time series and DEGWO-SVR model. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2275-2285.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.12.007     OR     https://www.zjujournals.com/eng/Y2021/V55/I12/2275


基于时间序列与DEGWO-SVR模型的隧道变形预测方法

为了对准确预测隧道变形的非等距性及复杂非线性特征,结合时序分析理论、差分进化算法(DE)、灰狼优化算法(GWO)和支持向量回归机(SVR)模型,提出新的隧道变形预测模型. 利用3次样条函数插值法将非等距监测数据等距化;基于时间序列原理将变形分解为趋势项及平稳随机项,并采用所提模型分别对2个分解项进行预测;将各位移分量叠加,实现隧道累积变形的预测. 以重庆市兴隆隧道实测拱顶沉降为例,预测前方ZK37+900和ZK37+910断面拱顶沉降,并与已有模型进行对比. 结果表明:所提模型预测的均方根误差分别为0.193 7 、0.086 9 mm,平均绝对百分比误差分别为1.21%、0.55%,相关系数分别为0.997 1、0.992 8. 相比于已有模型,所提模型的预测精度更高、误差更小,具有更好的适用性及应用前景.


关键词: 隧道工程,  隧道变形预测,  时间序列,  差分进化(DE),  灰狼优化(GWO),  支持向量回归(SVR) 
Fig.7 Prediction results of trend terms displacement of different models
函数 算法 vOS vW vAVG vSTD
f1(x) DE 8.21×10?4 1.83×10?3 1.25×10?3 2.26×10?4
f1(x) GWO 1.11×10?7 2.50×10?6 7.04×10?7 5.21×10?7
f1(x) DEGWO 0 6.21×10?7 1.77×10?7 1.68×10?7
f2(x) DE 6.41×10 8.51×10 7.57×10 6.41
f2(x) GWO 5.68×10?14 1.00×10 2.09 3.57
f2(x) DEGWO 0 7.16×10?12 1.07×10?12 2.31×10?12
Tab.1 Effects comparison of test function
Fig.1 Flowchart of prediction based on DEGWO-SVR
Fig.2 Deformation monitoring point layout of each section
Fig.3 Location plan of deformation monitoring point
Fig.4 Engineering geological section
Fig.5 Equidistant time series data of different sections
Fig.6 Displacement of trend terms and stationary random terms of different sections
监测断面 p/10?2 H
1% 5% 10%
ZK37+950 1.28 0 1 1
ZK37+940 1.48 0 1 1
ZK37+930 0.87 1 1 1
ZK37+920 0.38 1 1 1
ZK37+910 0.32 1 1 1
ZK37+900 0.30 1 1 1
Tab.2 Result evaluation of ADF test of random terms displacement
模型 监测断面 位移分量 c g
DEGWO-SVR ZK37+900 趋势项 9.999 0.010
DEGWO-SVR ZK37+900 平稳随机项 7.185 2.707
DEGWO-SVR ZK37+910 趋势项 6.080 0.010
DEGWO-SVR ZK37+910 平稳随机项 28.350 1.669
SVM信息粒化 ZK37+900 趋势项 51.874 0.150
SVM信息粒化 ZK37+900 平稳随机项 26.164 0.713
SVM信息粒化 ZK37+910 趋势项 82.852 0.150
SVM信息粒化 ZK37+910 平稳随机项 12.170 0.315
SVM ZK37+900 趋势项 1.000 0.125
SVM ZK37+900 平稳随机项 1.000 0.125
SVM ZK37+910 趋势项 1.516 0.125
SVM ZK37+910 平稳随机项 8.000 0.125
Tab.3 Optimal parameters of different prediction models
模型 R RMSE/ mm MAPE/ %
ZK37+900 ZK37+910 ZK37+900 ZK37+910 ZK37+900 ZK37+910
DEGWO-SVR 0.999 6 0.999 7 0.187 0 0.057 6 1.25 0.39
SVM信息粒化 0.979 6 0.939 6 0.645 7 0.765 0 4.06 4.85
SVM 0.982 1 0.976 4 1.002 3 0.841 6 6.71 5.57
Tab.4 Prediction accuracy and error of trend terms displacement of different models
Fig.8 Prediction results of stationary random terms displacement of  differentmodels
模型 R RMSE/mm MAPE/%
ZK37+900 ZK37+910 ZK37+900 ZK37+910 ZK37+900 ZK37+910
DEGWO-SVR 0.957 4 0.918 6 0.079 5 0.084 4 26.51 77.04
SVM信息粒化 0.979 9 0.923 9 0.148 6 0.118 9 122.56 85.76
SVM 0.972 9 0.978 3 0.214 8 0.121 3 179.07 88.54
Tab.5 Prediction accuracy and error of stationary random terms displacement of  different models
Fig.9 Prediction results of cumulative displacement of different models
模型 R RMSE/mm MAPE/%
ZK37+900 ZK37+910 ZK37+900 ZK37+910 ZK37+900 ZK37+910
DEGWO-SVR 0.997 1 0.992 8 0.193 7 0.086 9 1.21 0.55
SVM信息粒化 0.987 9 0.903 4 0.505 0 0.878 9 4.52 6.70
SVM 0.982 9 0.982 5 0.791 8 0.726 7 5.89 5.32
Tab.6 Prediction accuracy and error of cumulative displacement of different models
Fig.10 Initial deformation prediction results of ZK37+910 section
模型 R RMSE/mm MAPE/%
DEGWO-SVR 0.997 4 0.185 4 1.57
SVM信息粒化 0.993 1 0.704 9 6.53
SVM 0.997 1 0.792 7 7.02
Tab.7 Prediction accuracy and error of initial deformation of ZK37+910 section
[1]   WANG S H, NI P P, GUO M D Spatial characterization of joint planes and stability analysis of tunnel blocks[J]. Tunnelling and Underground Space Technology, 2013, 38: 357- 367
doi: 10.1016/j.tust.2013.07.017
[2]   刘新荣, 刘俊, 黄伦海, 等 黄土连拱隧道开挖的模型试验与压力拱分析[J]. 浙江大学学报:工学版, 2018, 52 (6): 1140- 1149
LIU Xin-rong, LIU Jun, HUANG Lun-hai, et al Model test and pressure arch analysis for excavation of loess double arch tunnel[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (6): 1140- 1149
[3]   王述红, 朱宝强 山岭隧道洞口段地表沉降时序预测研究[J]. 岩土工程学报, 2021, 43 (5): 813- 821
WANG Shu-hong, ZHU Bao-qiang Study on time series prediction of ground settlement at the entrance of mountain tunnel[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (5): 813- 821
[4]   SUWANSAWAT S, EINSTEIN H H Describing settlement troughs over twin tunnels using a superposition technique[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133 (4): 445- 468
doi: 10.1061/(ASCE)1090-0241(2007)133:4(445)
[5]   ZHAO C Y, LAVASAN A A, BARCIAGA T, et al Prediction of tunnel lining forces and deformations using analytical and numerical solutions[J]. Tunnelling and Underground Space Technology, 2017, 64: 164- 176
doi: 10.1016/j.tust.2017.01.015
[6]   丁智, 王凡勇, 魏新江 软土双线盾构施工地表变形实测分析与预测[J]. 浙江大学学报:工学版, 2019, 53 (1): 61- 68
DING Zhi, WANG Fan-yong, WEI Xin-jiang Prediction and analysis of surface deformation caused by twin shield construction in soft soil[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (1): 61- 68
[7]   LIU Z Q, GUO D, LACASSE S, et al Algorithms for intelligent prediction of landslide displacement[J]. Journal of Zhejiang University-Science A: Applied Physics and Engineering, 2020, 21 (6): 412- 429
doi: 10.1631/jzus.A2000005?utm_campaign=Journal_of_Zhejiang_University-SCIENCE_A_(Applied_Physics_
[8]   TANG Y Q, CUI Z D, WANG J X, et al Application of grey theory-based model to prediction of land subsidence due to engineering environment in Shanghai[J]. Environmental Geology, 2008, 55 (3): 583- 593
doi: 10.1007/s00254-007-1009-y
[9]   张俊, 殷坤龙, 王佳佳, 等 基于时间序列与PSO-SVR耦合模型的白水河滑坡位移预测研究[J]. 岩石力学与工程学报, 2015, 34 (2): 382- 391
ZHANG Jun, YIN Kun-long, WANG Jia-jia, et al Displacement prediction of Baishuihe landslide based on time series and PSO-SVR model[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (2): 382- 391
[10]   DU H, SONG D Q, CHEN Z, et al Prediction model oriented for landslide displacement with step-like curve by applying ensemble empirical mode decomposition and the PSO-ELM method[J]. Journal of Cleaner Production, 2020, 270: 122248
doi: 10.1016/j.jclepro.2020.122248
[11]   LIU K Y, LIU B G Intelligent information-based construction in tunnel engineering based on the GA and CCGPR coupled algorithm[J]. Tunnelling and Underground Space Technology, 2019, 88: 113- 128
doi: 10.1016/j.tust.2019.02.012
[12]   杨背背, 殷坤龙, 杜娟 基于时间序列与长短时记忆网络的滑坡位移动态预测模型[J]. 岩石力学与工程学报, 2018, 37 (10): 2334- 2343
YANG Bei-bei, YIN Kun-long, DU Juan A model for predicting landslide displacement based on time series and long and short term memory neural network[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (10): 2334- 2343
[13]   FENG X D, JIMENEZ R, ZENG P, et al Prediction of time-dependent tunnel convergences using a Bayesian updating approach[J]. Tunnelling and Underground Space Technology, 2019, 94: 103118
doi: 10.1016/j.tust.2019.103118
[14]   MAHDEVAR S, HAGHIGHAT H S, TORABI S R A dynamically approach based on SVM algorithm for prediction of tunnel convergence during excavation[J]. Tunnelling and Underground Space Technology, 2013, 38: 59- 68
doi: 10.1016/j.tust.2013.05.002
[15]   SHI S S, ZHAO R J, LI S C, et al Intelligent prediction of surrounding rock deformation of shallow buried highway tunnel and its engineering application[J]. Tunnelling and Underground Space Technology, 2019, 90: 1- 11
doi: 10.1016/j.tust.2019.04.013
[16]   XUE Y G, ZHANG X L, LI S C, et al Analysis of factors influencing tunnel deformation in loess deposits by data mining: a deformation prediction model[J]. Engineering Geology, 2018, 232: 94- 103
doi: 10.1016/j.enggeo.2017.11.014
[17]   张可能, 胡达, 何杰, 等 基于Kriging时空统一模型的隧道动态施工位移预测[J]. 中南大学学报:自然科学版, 2017, 48 (12): 3328- 3334
ZHANG Ke-neng, HU Da, HE Jie, et al Tunnel construction of dynamic displacement prediction based on unified space-time Kriging model[J]. Journal of Central South University: Science and Technology, 2017, 48 (12): 3328- 3334
doi: 10.11817/j.issn.1672-7207.2017.12.025
[18]   MIRJALILI S, MIRJALILI S M, LEWIS A Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69 (3): 46- 61
[19]   孙元春, 尚彦军 岩石隧道围岩变形时空效应分析[J]. 工程地质学报, 2008, 16 (2): 211- 215
SUN Yuan-chun, SHANG Yan-jun Integrated analysis of the tempo-spatial effect of surrounding rock deformation in tunneling[J]. Journal of Engineering Geology, 2008, 16 (2): 211- 215
doi: 10.3969/j.issn.1004-9665.2008.02.012
[20]   中华人民共和国交通运输部. 公路隧道施工技术规范: JTG F60—2009 [S]. 北京: 人民交通出版社, 2009: 32-34.
[21]   何亚伯, 梁城 非等距时间序列模型在隧道拱顶位移预测中的应用[J]. 岩石力学与工程学报, 2014, 33 (Suppl.2): 4096- 4101
HE Ya-bo, LIANG Cheng A non-equidistant time series model and its application in tunnel vault crown displacement prediction[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (Suppl.2): 4096- 4101
[22]   李麟玮, 吴益平, 苗发盛, 等 基于变分模态分解与GWO-MIC-SVR模型的滑坡位移预测研究[J]. 岩石力学与工程学报, 2018, 37 (6): 1395- 1406
LI Lin-wei, WU Yi-ping, MIAO Fa-sheng, et al Displacement prediction of landslides based on variational mode decomposition and GWO-MIC-SVR model[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (6): 1395- 1406
[23]   邓冬梅, 梁烨, 王亮清, 等 基于集合经验模态分解与支持向量机回归的位移预测方法: 以三峡库区滑坡为例[J]. 岩土力学, 2017, 38 (12): 3660- 3669
DENG Dong-mei, LIANG Ye, WANG Liang-qing, et al Displacement prediction method based on ensemble empirical mode decomposition and support vector machine regression: a case of landslides in Three Gorges Reservoir area[J]. Rock and Soil Mechanics, 2017, 38 (12): 3660- 3669
[24]   VAPNIK V N. The nature of statistical learning theory[M]. New York: Springer, 2000.
[25]   STORN R, PRICE K. Minimizing the real functions of the ICEC′96 contest by differential evolution [C]// Proceedings of IEEE International Conference on Evolutionary Computation. Nagoya: IEEE, 2002: 842-844.
[1] Wen-juan LI,Hong-gao DENG,Mou MA,Jun-zheng JIANG. Prediction method of infectious disease transmission based on graph signal processing[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 1017-1024.
[2] Wei-hang CHEN,Qiang LUO,Teng-fei WANG,Liang-wei JIANG,Liang ZHANG. Bi-LSTM based rolling forecast of subgrade post-construction settlement with unevenly spaced time series[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 683-691.
[3] Lin TONG,Zheng GUAN,Li-wei WANG,Wen-tao YANG,Yang YAO. New energy ramp event prediction based on time series decomposition and error correction[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 338-346.
[4] Nan ZHANG,Hong-zhao DONG,Yi-ni SHE. Seq2Seq prediction of bus trajectory on exclusive bus lanes[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1482-1489.
[5] Jian-bin LI,Ying-ying WU,Peng-yu LI,Xiao-feng ZHENG,Jian-an XU,Xiang-yu JU. TBM tunneling parameters prediction based on Locally Linear Embedding and Support Vector Regression[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1426-1435.
[6] Jian-ping ZHAO,Jian-wu LI,Lin Bi,Bei-bei CHENG. Analytical solution of seepage field and reasonable support parameters of tunnel in water rich area[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2142-2150.
[7] Gong CHEN,Chun-hua ZHENG,Xian-ming WENG,Baustani HAMEED,Hong-hao HU,Xiao-yu MA,Jing-qing LIU. Diagnosis of road drainage inlets’ abnormal condition using multi-hydrological data association analysis[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 55-61.
[8] Peng ZHAN,Lin CHEN,Lu-hui CAO,Xue-qing LI. Network traffic anomaly detection based on feature-based symbolic representation[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1281-1288.
[9] Chen-lin WANG,Jie YANG,Wen-jun JU,Fu GU,Ji-xi CHEN,Yang-jian JI. Short term load forecasting and peak shaving optimization based on intelligent home appliance[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1418-1424.
[10] Zi-long WANG,Zhu WANG,Zhi-wen YU,Bin GUO,Xing-she ZHOU. Transnational population migration forecast with multi-source data[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1759-1767.
[11] LI Lin-wei, WU Yi-ping, MIAO Fa-sheng. Prediction of non-equidistant landslide displacement time series based on grey wolf support vector machine[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1998-2006.
[12] WU Jiang-hong, JIANG Feng. Life cycle climate performance of air conditioner based on dynamic loads[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(10): 2061-2069.
[13] CAI Qing lin, CHEN Ling, MEI Han lei, SUN Jian ling. Two-step filtering based time series similarity search[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1290-1297.
[14] WEI Yuan, FENG Tian heng, HUANG Ping jie, HOU Di bo, ZHANG Guang xin. Contamination event detection method based on dynamic correlation analysis of multiple water quality parameters[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1402-1409.
[15] CHEN Da wei, YAO Shuan bao, LIU Shao qing, GUO Di long. Inverse design for aerodynamic shape of high speed train nose[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(4): 631-640.