Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (10): 1998-2006    DOI: 10.3785/j.issn.1008-973X.2018.10.020
Earth Science     
Prediction of non-equidistant landslide displacement time series based on grey wolf support vector machine
LI Lin-wei, WU Yi-ping, MIAO Fa-sheng
Faculty of Engineering, China University of Geoscience, Wuhan 430074, China
Download:   PDF(1373KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The Baishuihe Landslide in the Three Gorges Reservoir Area was taken as an example, and the non-equidistance and the complexity of the landslide displacement monitoring data were considered. A new non-equidistant displacement prediction model was proposed by combining the non-equidistant time series analysis, the grey wolf optimization (GWO) and the support vector regression (SVR). The natural cubic-spline interpolation method was employed to process the landslide displacement data. Then the trend component and the periodic component in landslide displacement were separated based on the time series approach. The cubic polynomial fitting based on robust least squares and the GWO-SVR coupling model were used to predict the trend displacement and the periodic displacement displacements respectively. The predicted value of landslide cumulative displacement was obtained through the time series model. Results show that the non-equidistant landslide displacement prediction model based on the grey wolf algorithm optimized support vector machine not only has high prediction accuracy and small prediction error, but also has simple calculation parameter settings and fast convergence.



Received: 02 July 2017      Published: 11 October 2018
CLC:  P642  
Cite this article:

LI Lin-wei, WU Yi-ping, MIAO Fa-sheng. Prediction of non-equidistant landslide displacement time series based on grey wolf support vector machine. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1998-2006.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.10.020     OR     http://www.zjujournals.com/eng/Y2018/V52/I10/1998


基于灰狼支持向量机的非等时距滑坡位移预测

以三峡库区白水河滑坡为例,针对滑坡位移监测数据的非等距性和复杂性,结合非等距时间序列分析法、灰狼优化算法(GWO)和支持向量回归机(SVR)模型,提出新型非等距位移时序预测模型.利用自然三次样条插值法对滑坡位移数据进行等时距处理,基于时间序列分析理论将位移数据中的趋势成分和周期成分剥离,采用基于稳健最小二乘法的三次多项式拟合和GWO-SVR耦合模型分别对这两者进行预测,利用时间序列加法模型得到滑坡累计位移的预测值.研究表明,基于灰狼支持向量机的非等时距滑坡位移预测模型不仅预测精度高,预测误差较小,且寻优参数设置简单,计算收敛迅速.

[1] 彭令, 牛瑞卿, 吴婷. 时间序列分析与支持向量机的滑坡位移预测[J]. 浙江大学学报:工学版, 2013, 47(9):1672-1679 PENG Ling, NIU Rui-qing, WU Ting. Time series analysis and support vector machine for landslide displacement prediction[J]. Journal of Zhejiang University:Engineering Science, 2013, 47(9):1672-1679
[2] 许强, 汤明高, 徐开祥, 等. 滑坡时空演化规律及预警预报研究[J]. 岩石力学与工程学报, 2008, 27(6):1104-1112 XU Qiang, TANG Ming-gao, XU Kai-xiang, et al. Research on space-time evolution laws and early warning-prediction of landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6):1104-1112
[3] LI D, YIN K, LEO C. Analysis of Baishuihe landslide influenced by the effects of reservoir water and rainfall[J]. Environmental Earth Sciences, 2010, 60(4):677-687.
[4] ZHOU C, YIN K, CAO Y, et al. Application of time series analysis and PSO-SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, China[J]. Engi-neering Geology, 2016, 204:108-120.
[5] 张俊, 殷坤龙, 王佳佳, 等. 基于时间序列与PSO-SVR耦合模型的白水河滑坡位移预测研究[J]. 岩石力学与工程学报, 2015, 34(2):382-391 ZHANG Jun, YIN Kun-long, WANG Jia-jia, et al. Displacement prediction of Baishuihe landslide based on time series and PSO-SVR model[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2):382-391
[6] CAI Z, XU W, MENG Y, et al. Prediction of landslide displacement based on GA-LSSVM with multiple factors[J]. Bulletin of Engineering Geology and the Environ-ment, 2016, 75(2):637-646.
[7] DU J, YIN K, LACASSE S. Displacement prediction in colluvial landslides, Three Gorges Reservoir, China[J]. Landslides, 2013, 10(2):203-218.
[8] 黄发明, 殷坤龙, 张桂荣, 等. 多变量PSO-SVM模型预测滑坡地下水位[J]. 浙江大学学报:工学版, 2015, 49(6):1193-1200 HUANG Fa-ming, YIN Kun-long, ZHANG Gui-rong, et al. Prediction of groundwater level in landslide using multivariable PSO-SVM model[J]. Journal of Zhejiang University:Engineering Science, 2015, 49(6):1193-1200
[9] VAPNIK V N. 统计学习理论的本质[M]. 张学工, 译. 北京:清华大学出版社, 2000:96-101.
[10] 苗发盛, 吴益平, 谢媛华, 等. 基于多算法参数优化与SVR模型的白水河滑坡位移预测[J]. 工程地质学报, 2016, 24(6):1136-1144 MIAO Fa-sheng, WU Yi-ping, XIE Yuan-hua, et al. Displacement prediction of Baishuihe landslide based on multi algorithm optimization and SVR model[J]. Journal of Engineering Geology, 2016, 24(6):1136-1144
[11] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69(3):46-61.
[12] 卢书强, 易庆林, 易武, 等. 库水下降作用下滑坡动态变形机理分析——以三峡库区白水河滑坡为例[J]. 工程地质学报, 2014, 22(5):869-875 LU Shu-qiang, YI Qing-lin, YI Wu, et al. Study on dynamic deformation mechanism of landslide in drawdown of reservoir water level:take Baishuihe landslide in three gorges reservoir area for example[J]. Journal of Engineering Geology, 2014, 22(5):869-875
[13] 彭令, 牛瑞卿, 赵艳南, 等. 基于核主成分分析和粒子群优化支持向量机的滑坡位移预测[J]. 武汉大学学报:信息科学版, 2013, 38(2):148-592 PENG Ling, NIU Rui-qing, ZHAO Yan-nan, et al. Prediction of landslide displacement based on KPCA and PSO-SVR[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2):148-592
[14] 吴益平, 滕伟福, 李亚伟. 灰色-神经网络模型在滑坡变形预测中的应用[J]. 岩石力学与工程学报, 2007, 26(3):632-636 WU Yi-ping, TENG Wei-fu, LI Ya-wei. Application of grey-neural network model to landslide deformation prediction[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3):632-636
[15] REN F, WU X, ZHANG K, et al. Application of wavelet analysis and a particle swarm-optimized support vector machine to predict the displacement of the Shuping land-slide in the Three Gorges, China[J]. Environmental Earth Sciences, 2015, 73(8):4791-4804.
[16] 汪洋, 殷坤龙, 安关峰. 滑坡敏感因子的灰色关联分析[J]. 岩土力学, 2004, 25(1):91-93 WANG Yang, YIN Kun-long, AN Guan-feng. Grey correlation analysis of sensitive factors of landslide[J]. Rock and Soil Mechanics, 2004, 25(1):91-93

[1] HUANG Zeng, WANG Rui, ZHAO Yu, WEI Zhen-lei. Susceptibility assessment of landslides triggered by buried fault earthquake[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(11): 2136-2143.