Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (11): 2330-2337    DOI: 10.3785/j.issn.1008-973X.2024.11.014
    
Integration method of trough solar-assisted coal-fired power generation system
Tingfang YU(),Ao FANG,Longfei LI,Xun XU*()
School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China
Download: HTML     PDF(1060KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Three integration methods of the trough solar-assisted coal-fired unit power generation (SAPG) system were proposed for a 600 MW supercritical generating unit. The first one is the parallel connection of solar fields instead of high-pressure heaters, the second one is the high-pressure series connection of solar fields instead of high-pressure heaters, and the third one is the low-voltage series connection of solar fields instead of high-pressure heaters. Matlab programming was used to establish a simulation model for power generation in a trough solar-assisted coal-fired power plant. The thermal performance of the different integration methods was simulated and calculated under the power increase mode (PB mode). Comparative analyses of the system’s solar power generation, photovoltaic conversion efficiency, and standard coal consumption rate were conducted under the three integration methods. Results showed that the three integration methods of the SAPG system increased with the direct normal solar irradiance EDNI. The solar energy introduction scale reached a peak of 192.37 MW, the solar power generation capacity was 59.55 MW, the photovoltaic conversion efficiency reached 20.10%, and the standard coal consumption rate was the lowest 264.44 g/(kW·h). The solar power generation capacity, photovoltaic conversion efficiency, and standard coal consumption rate of the low-voltage series connection integration method are better than those of the high-voltage series connection and the parallel connection integration method when the EDNI ≤ 482 W/m2. The thermal performance index of the parallel integration method is better than that of the other two integration methods when EDNI ≥ 482 W/m2, and the thermal performance index of the high-voltage series integration method is the lowest.



Key wordstrough solar      solar-assisted coal-fired unit power generation (SAPG)      integration approach      thermal performance analysis     
Received: 10 December 2023      Published: 23 October 2024
CLC:  TK 512  
Fund:  国家自然科学基金资助项目(52166009).
Corresponding Authors: Xun XU     E-mail: yutingfang@ncu.edu.cn;15210879582@163.com
Cite this article:

Tingfang YU,Ao FANG,Longfei LI,Xun XU. Integration method of trough solar-assisted coal-fired power generation system. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2330-2337.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.11.014     OR     https://www.zjujournals.com/eng/Y2024/V58/I11/2330


槽式太阳能辅助燃煤发电系统集成方式

针对某600 MW超临界发电机组,提出3种槽式太阳能辅助燃煤机组发电(SAPG)系统的集成方式. 第1种为太阳能场并联取代高压加热器,第2种为太阳能场高压串联取代高压加热器,第3种为太阳能场低压串联取代高压加热器. 利用Matlab编程建立槽式太阳能辅助燃煤电厂发电的仿真模型,在功率增大模式(PB模式)下仿真计算不同的集成方式热力性能,对3种集成方式下系统的太阳能发电量、光电转换效率、标准煤耗率等指标进行对比分析. 结果表明,SAPG系统的3种集成方式随着太阳法向直接辐照度EDNI的增大,太阳能引入规模达到峰值为192.37 MW,太阳能发电量为59.55 MW,光电转换效率达到20.10%,标准煤耗率最低为264.44 g/(kW·h). 当EDNI ≤ 482 W/m2时,低压串联的集成方式下太阳能发电量、光电转换效率、标准煤耗率等指标均优于高压串联及并联集成的方式;当EDNI ≥ 482 W/m2时,并联集成方式的热力性指标均优于其他2种集成方式,高压串联的集成方式热力性能指标最低.


关键词: 槽式太阳能,  太阳能辅助燃煤机组发电(SAPG),  集成方式,  热力性能分析 
参数数值
槽式集热器LS-2
导热油THERMINOLVP-1
模块规格/ m25×47.1
EDNI/ (W·m?2)750
环境温度/℃16
太阳入射角/(°)15.2
太阳倍数1.0
跟踪方式水平南北跟踪
集热场面积/ m2511 035
Tab.1 Relevant parameter under design point of trough solar collector system
工况$P $/MWp0/MPat0/℃qm0/(t·h?1)tr/℃tw/℃pc/kPahc/(kJ·kg?1)
THA60024.25661 728566283.46.52 442.5
T-MCR64224.25661 857566288.16.52 523.5
Tab.2 Main parameter of turbine unit
Fig.1 Schematic diagram of SAPG system integration approach
名称设计值(100%THA)模拟值(100%THA)$ \xi_{\mathrm{p}} $/%$ \xi_{\mathrm{f}} $/%
pi /MPaqm /(t·h?1pi /MPaqm /(t·h?1
主蒸汽24.2172824.217550.001.50
一抽6.79116.866.85118.980.881.80
二抽4.50143.754.50144.1500.28
三抽2.1668.472.1869.590.911.60
四抽1.0887.881.0987.650.040.26
五抽0.3746.280.3746.3700.20
六抽0.2044.840.2045.4501.36
七抽0.1044.340.1044.9601.39
八抽0.0570.650.0570.1800.67
Tab.3 Comparison of design condition data and simulation result of coal-fired generating unit
Fig.2 Variation of high pressure heater extracted vapor flow with EDNI for high pressure series integration method
Fig.3 Variation of high pressure heater extracted vapor flow with EDNI for low pressure series integration method
Fig.4 Variation of high pressure heater extracted vapor flow with EDNI in parallel integration mode
Fig.5 Comparison of size of solar energy introduction
Fig.6 Comparison of solar power generation of SAPG
Fig.7 Comparison of photoelectric conversion efficiency
Fig.8 Comparison of standard coal consumption
[1]   张金平, 周强, 王定美, 等 太阳能光热发电技术及其发展综述[J]. 综合智慧能源, 2023, 45 (2): 44- 52
ZHANG Jinping, ZHOU Qiang, WANG Dingmei, et al Overview of solar photovoltaic power generation technology and its development[J]. Integrated Intelligent Energy, 2023, 45 (2): 44- 52
[2]   WU J, HAN Y, HOU H A new solar share evaluation method of solar aided power generation (SAPG) system by tracing exergy flows and allocating exergy destruction[J]. Solar Energy, 2020, 198 (C): 542- 554
[3]   刘义达, 李官鹏, 祁金胜 熔盐槽式太阳能光热发电技术特点及发展方向[J]. 能源与节能, 2023, (3): 1- 5
LIU Yida, LI Guanpeng, QI Jinsheng Characteristics and development direction of molten salt trough solar thermal power generation technology[J]. Energy and Energy Conservation, 2023, (3): 1- 5
[4]   常泽辉, 杭小蓉, 刘雪东, 等 槽式复合多曲面聚光集热器光热性能研究[J]. 太阳能学报, 2023, 44 (7): 221- 228
CHANG Zehui, HANG Xiaorong, LIU Xuedong, et al Study on the photothermal performance of trough-type composite multi-curved concentrating collector[J]. Journal of Solar Energy, 2023, 44 (7): 221- 228
[5]   程兴利 槽式太阳能热发电站中太阳岛的集热器回路的压力试验分析[J]. 太阳能, 2022, (1): 72- 76
CHENG Xingli Pressure test analysis of collector circuits of solar islands in trough solar thermal power plants[J]. Solar Energy, 2022, (1): 72- 76
[6]   陈欢, 王红梅, 俞自涛, 等 自然循环槽式太阳能中高温集热系统实验研究[J]. 浙江大学学报: 工学版, 2012, 46 (9): 1666- 1670
CHEN Huan, WANG Hongmei, YU Zitao, et al Experimental investigation of a natural circulation parabolic trough collector system for medium-high temperature steam generation[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (9): 1666- 1670
[7]   SINA K, SASAN A, MAJID S A smart grid poly-generation design for hot arid regions composed of multi-effect distillation (MED), compressed air energy storage (CAES), and parabolic trough solar collector field (PTSC)[J]. Journal of Cleaner Production, 2022, 372: 2- 5
[8]   吴俊杰. 槽式太阳能热与燃煤互补发电系统的耦合机理与集成优化研究 [D]. 北京: 华北电力大学, 2019.
WU Junjie. Research on coupling mechanism and integration optimisation of trough solar thermal and coal-fired complementary power generation system [D]. Beijing: North China Electric Power University, 2019.
[9]   RECH S, LAZZARETTO A, GRIGOLON E Optimum integration of concentrating solar technologies in a real coal-fired power plant for fuel saving[J]. Energy Conversion and Management, 2018, 178: 299- 310
doi: 10.1016/j.enconman.2018.10.026
[10]   HOU Y, SUN Y Y, WU J J A low-cost and efficient solar/coal hybrid power generation mode: Integration of non-concentrating solar energy and air preheating process[J]. Energy, 2021, 235: 1- 5
[11]   HONG H, PENG S, ZHANG H, et al Performance assessment of hybrid solar energy and coal-fired power plant based on feed-water preheating[J]. Energy, 2017, 128: 830- 838
doi: 10.1016/j.energy.2017.04.050
[12]   CHANG H, RAFAL M, QI Z, et al On the use of thermal energy storage in solar-aided power generation systems[J]. Applied Energy, 2022, 310: 3- 10
[13]   WANG Y, XU J, CHEN Z, et al Technical and economical optimization for a typical solar hybrid coal-fired power plant in China[J]. Applied Thermal Engineering, 2017, 115: 549- 557
doi: 10.1016/j.applthermaleng.2016.12.132
[14]   钱兆跃 可参与调频的光煤互补系统容量选型及经济性分析[J]. 热力发电, 2023, 52 (2): 154- 161
QIAN Zhaoyue Capacity sizing and economic analysis of a light-coal complementary system that can participate in frequency regulation[J]. Thermal Power Generation, 2023, 52 (2): 154- 161
[15]   KUMAR V, DUAN L Off-design dynamic performance analysis of a solar aided coal-fired power plant[J]. Energies, 2021, 14 (10): 2950
doi: 10.3390/en14102950
[16]   周璐璐, 王军, 邴旖旎, 等 太阳能辅助的燃煤机组经济性分析[J]. 太阳能学报, 2021, 42 (10): 105- 110
ZHOU Lulu, WANG Jun, BING Yini, et al Economic analysis of solar-assisted coal-fired units[J]. Journal of Solar Energy, 2021, 42 (10): 105- 110
[17]   ZHANG N, HOU H, YU G, et al Simulated performance analysis of a solar aided power generation plant in fuel saving operation mode[J]. Energy, 2019, 166: 918- 928
doi: 10.1016/j.energy.2018.10.014
[18]   ZHANG N, YU G, HUANG C, et al Full-day dynamic characteristics analysis of a solar aided coal-fired power plant in fuel saving mode[J]. Energy, 2020, 208: 118424
doi: 10.1016/j.energy.2020.118424
[19]   SHAGDAR E, LOUGOU G B, SHUAI Y, et al Performance analysis and techno-economic evaluation of 300 MW solar-assisted power generation system in the whole operation conditions[J]. Applied Energy, 2020, 264: 114744
doi: 10.1016/j.apenergy.2020.114744
[20]   吴静, 王修彦, 杨勇平, 等 太阳能与燃煤机组混合发电系统集成方式的研究[J]. 动力工程学报, 2010, 30 (8): 639- 643
WU Jing, WANG Xiuyan, YANG Yongping, et al Research on the integration of solar energy and coal-fired hybrid power generation system[J]. Journal of Power Engineering, 2010, 30 (8): 639- 643
[21]   高嵩. 太阳能辅助燃煤机组集热场优化研究[D]. 北京: 华北电力大学, 2010.
GAO Song. Optimization study of solar-assisted coal-fired unit collector field [D]. Beijing: North China Electric Power University, 2010.
[22]   PATNODE A M. Simulation and performance evaluation of parabolic trough solar power plants [D]. Madison: University of Wisconsin-Madison, 2006: 163-171.
[23]   YAN H, LI X, LIU M, et al Performance analysis of a solar-aided coal-fired power plant in off-design working conditions and dynamic process[J]. Energy Conversion and Management, 2020, 220: 113059
doi: 10.1016/j.enconman.2020.113059
No related articles found!