Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (2): 219-225    DOI: 10.3785/j.issn.1008-973X.2023.02.001
    
Graph neural network based node embedding enhancement model for node classification
Ju-xiang ZENG(),Ping-hui WANG*(),Yi-dong DING,Lin LAN,Lin-xi CAI,Xiao-hong GUAN
Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Download: HTML     PDF(1473KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In reality, the structure of most graphs could be noisy, i.e., including some noisy edges or ignoring some edges that exist between nodes in practice. To solve these challenges, a novel differentiable similarity module (DSM), which boosted node representations by digging implict association between nodes to improve the accuracy of node classification, was presented. Basic representation of each target node was learnt by DSM using an ordinary graph neural network (GNN), similar node sets were selected in terms of node representation similarity and the basic representation of the similar nodes was integrated to boost the target node’s representation. Mathematically, DSM is differentiable, so it is possible to combine DSM as plug-in with arbitrary GNNs and train them in an end-to-end fashion. DSM enables to exploit the implicit edges between nodes and make the learned representations more robust and discriminative. Experiments were conducted on several public node classification datasets. Results demonstrated that with GNNs equipped with DSM, the classification accuracy can be significantly improved, for example, GAT-DSM outperformed GAT by significant margins of 2.9% on Cora and 3.5% on Citeseer.



Key wordsnode classification      supervised node classification      graph neural network      neural network      deep learning     
Received: 04 August 2022      Published: 28 February 2023
CLC:  TP 29  
Fund:  国家重点研发计划资助项目(2021YFB1715600);国家自然科学基金资助项目(61902305,61922067);深圳基础研究基金资助项目(JCYJ20170816100819428);“人工智能”教育部-中国移动建设资助项目(MCM20190701)
Corresponding Authors: Ping-hui WANG     E-mail: jxzeng@sei.xjtu.edu.cn;phwang@xjtu.edu.cn
Cite this article:

Ju-xiang ZENG,Ping-hui WANG,Yi-dong DING,Lin LAN,Lin-xi CAI,Xiao-hong GUAN. Graph neural network based node embedding enhancement model for node classification. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 219-225.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.02.001     OR     https://www.zjujournals.com/eng/Y2023/V57/I2/219


面向节点分类的图神经网络节点嵌入增强模型

考虑到实际的图结构往往是有噪的,可能包含实际不存在的边或者遗漏节点间实际存在的部分边,提出可微分相似度模型(DSM). 通过挖掘节点间隐藏关系增强节点嵌入,以提高节点分类的准确度. DSM基于普通图神经网络方法(GNN)得到各节点的基础表征,根据节点表征相似度为目标节点选出相似节点集合,结合相似节点集合的基础表征对目标节点进行嵌入表征增强. 在数学上,DSM 是可微分的,可以将 DSM 作为插件与任意 GNN 相结合,以端到端的方式进行训练. DSM具有挖掘隐藏连接关系的能力,能促使GNNs学习到更具辨识性和鲁棒性的节点表征. 基于最常用的多个公开的节点分类数据集,开展实验验证. 结果表明,将已有GNNs与DSM结合能显著提升分类准确度,其中GAT-DSM相对GAT在数据集Cora和Citeseer上分别取得了2.9%、3.5%的提升.


关键词: 节点分类,  有监督节点分类,  图神经网络,  神经网络,  深度学习 
Fig.1 Overview of GNN equipped with DSM
数据集 $ N $ $ M $ $ D $ $ C $
Cora 2 708 5 429 1 433 7
Citeseer 3 327 4 732 3 703 6
Pubmed 19 717 44 338 500 3
Tab.1 Summary of benchmark datasets
方法 5节点/类 10节点/类 20 节点/类
Raw 36.4±3.0 40.9±2.5 47.1±1.9
MLP 38.5±4.2 46.8±3.8 54.3±3.1
DeepWalk 53.6±4.5 60.7±3.5 66.6±1.9
ChebyNet 60.3±6.6 70.3±4.5 76.9±2.2
GCN 68.2±5.6 75.4±2.2 79.6±1.6
GAT 72.2±4.5 77.5±1.9 81.1±1.7
GCN-DSM *69.4±5.3 *76.2±3.0 79.5±1.9
GAT-DSM *75.1±4.1 *79.2±1.7 *81.8±1.4
Tab.2 Prediction accuracy on Cora dataset %
方法 5节点/类 10节点/类 20节点/类
Raw 37.2±3.3 42.8±2.6 48.5±2.1
MLP 34.2±6.1 38.1±6.3 52.1±5.8
DeepWalk 33.4±4.2 38.0±2.7 41.9±2.4
ChebyNet 59.4±5.3 65.6±2.4 67.7±2.0
GCN 55.3±4.4 64.9±2.5 69.2±1.6
GAT 62.4±3.0 66.6±2.2 69.9±1.7
GCN-DSM *59.0±4.6 *66.9±2.5 *69.7±1.6
GAT-DSM *65.9±2.6 *68.3±2.3 *70.6±1.8
Tab.3 Prediction accuracy on Citeseer dataset %
方法 5节点/类 10节点/类 20节点/类
Raw 57.7±1.3 62.3±3.3 66.5±2.4
MLP 59.8±4.1 64.3±3.2 69.6±2.6
DeepWalk 54.5±4.7 60.7±4.2 65.1±3.5
ChebyNet 65.4±7.0 70.1±4.9 75.0±2.5
GCN 68.2±6.2 72.9±3.8 77.0±2.4
GAT 71.3±5.3 74.7±2.9 77.7±2.5
GCN-DSM *68.8±5.7 *73.8±3.7 77.0±2.5
GAT-DSM *71.8±5.2 *75.6±3.1 *78.7±2.2
Tab.4 Prediction accuracy on Pubmed dataset %
Fig.2 t-SNE plots of node representation distribution of five different node embedding learning methods on Cora, Citeseer, and Pubmed datasets
Fig.3 Impact of number of similar nodes, hyper-parameter and loss balance factor on accuracy in Cora dataset
[1]   WU Z, PAN S, CHEN F, et al A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 32 (1): 4- 24
[2]   YAO L, MAO C, LUO Y. Graph convolutional networks for text classification [C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2019: 7370-7377.
[3]   ZHANG Z, CUI P, ZHU W Deep learning on graphs: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34 (1): 249- 270
doi: 10.1109/TKDE.2020.2981333
[4]   AKOGLU L, TONG H, KOUTRA D Graph based anomaly detection and description: a survey[J]. Data Mining and Knowledge Discovery, 2015, 29 (3): 626- 688
doi: 10.1007/s10618-014-0365-y
[5]   WANG P, XU B, XU J, et al Semantic expansion using word embedding clustering and convolutional neural network for improving short text classification[J]. Neurocomputing, 2016, 174: 806- 814
doi: 10.1016/j.neucom.2015.09.096
[6]   SHCHUR O, MUMME M, BOJCHEVSKI A, et al. Pitfalls of graph neural network evaluation [EB/OL]. [2022-04-02]. https://arxiv.org/abs/1811.05868.
[7]   ZHU D, ZHANG Z, CUI P, et al. Robust graph convolutional networks against adversarial attacks [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019.
[8]   HENAFF M, BRUNA J, LECUN Y. Deep convolutional networks on graph-structured data [EB/OL]. [2022-04-02]. http://arxiv.org/abs/1506.05163.
[9]   ZHANG Y, PAL S, COATES M J, et al. Bayesian graph convolutional neural networks for semi-supervised classification [C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2019: 5829-5836.
[10]   HAMILTON W, YING Z, LESKOVEC J. Inductive Representation learning on large graphs [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: Curran Associates, Inc., 2017: 1024-1034.
[11]   VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks [C]// Proceedings of International Conference on Learning Representations 2018. Vancouver: [s.n.], 2018.
[12]   DUVENAUD D K, MACLAURIN D, IPARRAGUIRRE J, et al. Convolutional networks on graphs for learning molecular fingerprints [C]// Proceedings of the 29th International Conference on Neural Information Processing Systems. New York: Curran Associates, Inc., 2015: 2224-2232.
[13]   NIEPERT M, AHMED M, KUTZKOV K. Learning convolutional neural networks for graphs [C]// Proceedings of the 33rd International Conference on Machine Learning. New York: ACM, 2016: 2014-2023.
[14]   WANG X, JI H, SHI C, et al. Heterogeneous graph attention network [C]// Proceedings of the World Wide Web Conference 2019. New York: ACM, 2019: 2022-2032.
[15]   BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs [C]// Proceedings of the 31st International Conference on Machine Learning. New York: ACM, 2014.
[16]   SCARSELLI F, GORI M, TSOI A C, et al The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20 (1): 61- 80
doi: 10.1109/TNN.2008.2005605
[17]   DEFFERRARD M E L, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering [C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: Curran Associates, Inc., 2016: 3844-3852.
[18]   KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [C]// Proceedings of International Conference on Learning Representations 2017. Toulon: [s.n.], 2017.
[19]   SEN P, NAMATA G, BILGIC M, et al Collective classification in network data[J]. AI Magazine, 2008, 29 (3): 93- 106
doi: 10.1609/aimag.v29i3.2157
[20]   ABADI M I N, BARHAM P, CHEN J, et al. TensorFlow: a system for large-scale machine learning [C]// Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation. Berkeley: USENIX, 2016: 265-283.
[21]   PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations [C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710.
[22]   VAN DER MAATEN L, HINTON G E Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9 (86): 2579- 2605
[23]   VERMA V, QU M, KAWAGUCHI K, et al. GraphMix: improved training of GNNs for semi-supervised learning [C]// Proceedings of the AAAI Conference on Artificial Intelligence. [s.l.]: AAAI, 2021: 10024-10032.
[24]   ZENG J, WANG P, LAN L, et al. Accurate and scalable graph neural networks for billion-scale graphs [C]// Proceedings of the 38th International Conference on Data Engineering. Kuala Lumpur: IEEE, 2022: 110-122.
[1] Hua HUANG,Qiu-ge ZHAO,Zai-xing HE,Jia-ran LI. Contour error control of two-axis system based on LSTM and Newton iteration[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 10-20.
[2] Chen YE,Hong-fei ZHAN,Ying-jun LIN,Jun-he YU,Rui WANG,Wu-chang ZHONG. Design knowledge recommendation based on inference-context-aware activation model[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 32-46.
[3] Li-zhao DAI,Wei CAO,Shan-chang YI,Lei WANG. Damage identification of concrete structure based on WPT-SVD and GA-BPNN[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 100-110.
[4] Jun-chi MA,Xiao-xin DI,Zong-tao DUAN,Lei TANG. Survey on program representation learning[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 155-169.
[5] Jin-zhen LIU,Fei CHEN,Hui XIONG. Open electrical impedance imaging algorithm based on multi-scale residual network model[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1789-1795.
[6] Wan-liang WANG,Tie-jun WANG,Jia-cheng CHEN,Wen-bo YOU. Medical image segmentation method combining multi-scale and multi-head attention[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1796-1805.
[7] Kun HAO,Kuo WANG,Bei-bei WANG. Lightweight underwater biological detection algorithm based on improved Mobilenet-YOLOv3[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1622-1632.
[8] Zheng-yin YANG,Jian HU,Jian-yong YAO,Ying-zhe SHA,Qiu-yu SONG. Fault-tolerant control based on adaptive neural network sliding mode observer[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1656-1665.
[9] Jun HE,Ya-sheng ZHANG,Can-bin YIN. Operating modes identification of spaceborne SAR based on deep learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1676-1684.
[10] Wei-hong NIU,Xiao-feng HUANG,Wei QI,Hai-bing YIN,Cheng-gang YAN. Fast stepwise all zero block detection algorithm for H.266/VVC[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1285-1293, 1319.
[11] Ren-peng MO,Xiao-sheng SI,Tian-mei LI,Xu ZHU. Bearing life prediction based on multi-scale features and attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1447-1456.
[12] Yong-sheng ZHAO,Rui-xiang LI,Na-na NIU,Zhi-yong ZHAO. Shape control method of fuselage driven by digital twin[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1457-1463.
[13] Zhu-peng WEN,Jie CHEN,Lian-hua LIU,Ling-ling JIAO. Fault diagnosis of wind power gearbox based on wavelet transform and improved CNN[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1212-1219.
[14] Jun-qi YU,Si-yuan YANG,An-jun ZHAO,Zhi-kun GAO. Hybrid prediction model of building energy consumption based on neural network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1220-1231.
[15] Li HE,Shan-min PANG. Face reconstruction from voice based on age-supervised learning and face prior information[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 1006-1016.