Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (11): 2299-2308    DOI: 10.3785/j.issn.1008-973X.2024.11.011
    
Human-machine shared obstacle avoidance method for wheelchair robot considering individual habit
Yina WANG1(),Chen CAO1,Jiaqi YANG1,Yanjun YU1,Guoqiang FU1,Shuoyu WANG2
1. School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China
2. School of Systems Engineering, Kochi University of Technology, Kochi 7820003, Japan
Download: HTML     PDF(2645KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A dynamic reinforcement learning strategy was introduced to establish the correlation between individual operating habits and collision risk based on a triple-reward system in order to resolve the impact of individual operating habits on the shared motion control of intelligent wheelchair robots (WR). A fuzzy reinforcement learning state fusion-based shared control strategy was proposed, which could adapt to user behavior while ensuring safety. A distance fuzzy reasoning algorithm was employed to develop a direction intention recognition model based on seat pressure, which served as the foundation for establishing a human-machine shared control framework in order to achieve intelligent robot control. The current and predictive reward functions were established via the Gaussian function and deviation rate, respectively, focusing on the deviation between the user’s intended direction and the robot’s actual direction in order to estimate user operating habits. A task reward function was created according to boundary distance in order to predict human-machine safety. The correlation between user operating habits and safety was constructed by utilizing the fuzzy reinforcement learning strategy and the triple-reward system in order to dynamically adjust the user control weight within the shared control to adapt to individual habits. Then the precision and safety of human-machine shared control were enhanced. The effectiveness of the proposed algorithm was verified by experiments in a test environment.



Key wordsintelligent wheelchair robot      distance fuzzy reasoning algorithm      fuzzy reinforcement learning      individual habit      human-machine shared control     
Received: 13 December 2023      Published: 23 October 2024
CLC:  TP 242  
Fund:  国家自然科学基金资助项目(52175105);教育部春晖计划资助项目(HZKY20220415);辽宁省科技厅资助项目(2024MS107);辽宁省教育厅资助项目(JYTMS20231207).
Cite this article:

Yina WANG,Chen CAO,Jiaqi YANG,Yanjun YU,Guoqiang FU,Shuoyu WANG. Human-machine shared obstacle avoidance method for wheelchair robot considering individual habit. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2299-2308.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.11.011     OR     https://www.zjujournals.com/eng/Y2024/V58/I11/2299


考虑个体习惯的轮椅机器人人机共享避障方法

为了避免个体操作习惯对智能轮椅机器人(WR)人机共享运动控制的影响,引入动态强化学习策略,基于三重奖励系统建立个体操作习惯与碰撞风险的关联特性,提出能够自适应用户行为及保证安全性的模糊强化学习状态融合式共享控制策略. 为了实现机器人的智能操控,采用距离型模糊推理算法建立基于座椅压力的方向意图识别模型和机器人人机共享控制框架. 面向用户意图方向与机器人实际方向的偏差度,分别基于高斯函数与偏差率建立当前奖励函数与预测奖励函数,以估计用户操作习惯. 基于边界距离建立任务奖励函数,以估计人机安全性. 基于模糊强化学习策略,利用三重奖励函数构建用户操作习惯与安全性的关联性,以动态调整共享控制中的用户控制权重,适应个体习惯,提高人机共享的操控精度和安全性. 在实验室搭建试验环境,验证了所提算法的有效性.


关键词: 智能轮椅机器人,  距离型模糊推理算法,  模糊强化学习,  个体习惯,  人机共享控制 
Fig.1 Structure of wheelchair robot
Fig.2 System flowchart of human-machine shared obstacle avoidance method considering individual operating habit
Fig.3 Subject’s required direction and angle in experiment
规则1:若x1=A11, x2=A12, x3=A13, x4=A14, 则$ \beta $=B1
规则2:若x1= A21, x2= A22, x3=A23, x4=A24, 则$ \beta $=B2
. . . . .
. . . . .
规则8:若x1=A81, x2=A82, x3=A83, x4=A84, 则$ \beta $=B8
前提:x1=A1, x2=A2, x3=A3, x4=A4
结论: $ \beta $=B
Tab.1 If-then fuzzy rules
Fig.4 Definition of linguistic variables’ membership function
Fig.5 Schematic diagram of shared control system
Fig.6 Membership function of shared fuzzy controller
vw
βb = Sβb = Mβb = MHβb = H
SSMMHMH
MMMMHH
HMMHHH
Tab.2 Fuzzy rule table
Fig.7 Structure of fuzzy reinforcement learning
βi/ (°)Emin/ (°)
实验对象A实验对象B实验对象C
0?1.5?3.8?8.1
450.54.9?5.1
901.94.39.8
135?1.20.50.7
180?0.50.36.4
225?0.7?7.2?5.9
2702.92.5?0.22
3154.72.91.7
Tab.3 Identification error of each subject
Fig.8 Actual photo of experimental environment
Fig.9 Obstacle avoidance path with desired speed of 0.2 m/s
Fig.10 Obstacle avoidance path with desired speed of 0.3 m/s
Fig.11 Correlated data changes in command direction, actual travel direction and operational weight
期望速度/ (m·s?1)避障类型Ma/ (°)βmin/ (°)dmin/cm
0.2自动避障23.74532
0.2共享避障10.47226
0.3自动避障27.214.447
0.3共享避障13.643.535
Tab.4 Comparison result before and after shared control
Fig.12 Actual photo of experimental environment 1
Fig.13 Actual photo of experimental environment 2
Fig.14 Comparison of robot travel directions in experimental environment 1
Fig.15 Online training process of relevant data in experimental enviroment 1
Fig.16 Comparison of robot travel directions in experimental enviroment 2
Fig.17 Online training process of relevant data in experimental enviroment 2
Fig.18 Changing trend of evaluation indicator of same subject in different experimental environment
Fig.19 Changing trend in evaluation criteria of different experimental subject in experimental scenario 1
实验对象TP
A2.280.0260
B3.800.0030
C3.260.0017
D4.070.0001
Tab.5 Result of paired T-test for |βhβs|
[1]   OHARA E, WATANABE T, OISHI T, et al. Assistance control of wheelchair operation using active cast for the upper limb [C]// IEEE International Conference on Robotics and Automation . Shanghai: IEEE, 2011: 2223-2228.
[2]   CHALOEM T, YOKOTA S, HASHIMOTO H, et al. Oscillation suppression control for electric wheelchair using human body motion interface [C]// IEEE International Conference on Industrial Technology . Lyon: IEEE, 2018: 1991-1996.
[3]   LU T. A motion control method of intelligent wheelchair based on hand gesture recognition [C]// IEEE 8th Conference on Industrial Electronics and Applications . Melbourne: IEEE, 2013: 957-962.
[4]   NASIF S, KHAN M A G. Wireless head gesture controlled wheel chair for disable persons [C]// IEEE Region 10 Humanitarian Technology Conference . Dhaka: IEEE, 2017: 156-161.
[5]   ÖZLÜK Y, AKMAN-AYDIN E Fuzzy logic control of a head-movement based semi-autonomous human–machine interface[J]. Journal of Bionic Engineering, 2023, 20 (2): 645- 655
doi: 10.1007/s42235-022-00272-3
[6]   KAUR A Wheelchair control for disabled patients using EMG/EOG based human machine interface: a review[J]. Journal of Medical Engineering and Technology, 2021, 45 (1): 61- 74
doi: 10.1080/03091902.2020.1853838
[7]   张亚徽, 王斐, 李景宏, 等 基于稳态视觉诱发电位的智能轮椅半自主导航控制[J]. 机器人, 2019, 41 (5): 620- 627
ZHANG Yahui, WANG Fei, LI Jinghong, et al Semi-autonomous navigation control of intelligent wheelchair based on steady state visual evoked potential[J]. Robot, 2019, 41 (5): 620- 627
[8]   RECHY-RAMIREZ E J, HU H A flexible bio-signal based HMI for hands-free control of an electric powered wheelchair[J]. International Journal of Artificial Life Research, 2014, 4 (1): 59- 76
doi: 10.4018/ijalr.2014010105
[9]   JAMEEL H F, MOHAMMED S L, GHARGHAN S K. Wheelchair control system based on gyroscope of wearable tool for the disabled [C]// IOP Conference Series: Materials Science and Engineering . Baghdad: IOP Publishing, 2020, 745(1): 012091.
[10]   PAING M P, JUHONG A, PINTAVIROOJ C Design and development of an assistive system based on eye tracking[J]. Electronics, 2022, 11 (4): 535
doi: 10.3390/electronics11040535
[11]   HORI J, OHARA H, INAYOSHI S Control of speed and direction of electric wheelchair using seat pressure mapping[J]. Biocybernetics and Biomedical Engineering, 2018, 38 (3): 624- 633
doi: 10.1016/j.bbe.2018.04.007
[12]   FAN J, JIA S, LI X, et al. Motion control of intelligent wheelchair based on sitting postures [C]// IEEE International Conference on Mechatronics and Automation . Beijing: IEEE, 2011: 301-306.
[13]   KHALILULLAH K M I, OTA S, YASUDA T, et al Road area detection method based on DBNN for robot navigation using single camera in outdoor environments[J]. Industrial Robot: An International Journal, 2018, 45 (2): 275- 286
doi: 10.1108/IR-08-2017-0139
[14]   SEZER V An optimized path tracking approach considering obstacle avoidance and comfort[J]. Journal of Intelligent and Robotic Systems, 2022, 105 (1): 21
doi: 10.1007/s10846-022-01636-x
[15]   陈英龙, 宋甫俊, 张军豪, 等 基于临场感的遥操作机器人共享控制研究综述[J]. 浙江大学学报: 工学版, 2021, 55 (5): 831- 842
CHEN Yinglong, SONG Fujun, ZHANG Junhao, et al Telerobotic shared control strategy based on telepresence: a review[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (5): 831- 842
[16]   JAIN S, ARGALL B. Recursive Bayesian human intent recognition in shared-control robotics [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems . Madrid: IEEE, 2018: 3905-3912.
[17]   NARAYANAN V K, SPALANZANI A, BABEL M. A semi-autonomous framework for human-aware and user intention driven wheelchair mobility assistance [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems . Daejeon: IEEE, 2016: 4700-4707.
[18]   DENG X, YU Z L, LIN C, et al Self-adaptive shared control with brain state evaluation network for human-wheelchair cooperation[J]. Journal of Neural Engineering, 2020, 17 (4): 045005
doi: 10.1088/1741-2552/ab937e
[19]   EZEH C, TRAUTMAN P, DEVIGNE L, et al. Probabilistic vs linear blending approaches to shared control for wheelchair driving [C]// International Conference on Rehabilitation Robotics . London: IEEE, 2017: 835-840.
[20]   JOHANNINK T, BAHL S, NAIR A, et al. Residual reinforcement learning for robot control [C]// International Conference on Robotics and Automation . Montreal: IEEE, 2019: 6023-6029.
[21]   XI L, SHINO M Shared control design methodologies of an electric wheelchair for individuals with severe disabilities using reinforcement learning[J]. Journal of Advanced Simulation in Science and Engineering, 2020, 7 (2): 300- 319
doi: 10.15748/jasse.7.300
[22]   WANG Y, WANG S A new directional-intent recognition method for walking training using an omnidirectional robot[J]. Journal of Intelligent and Robotic Systems, 2017, 87 (2): 231- 246
doi: 10.1007/s10846-017-0503-z
[23]   LINDBLAD J, SLADOJE N Linear time distances between fuzzy sets with applications to pattern matching and classification[J]. IEEE Transactions on Image Processing, 2013, 23 (1): 126- 136
[24]   ZHANG D, WANG Y, LIU Z, et al Intelligent obstacle avoidance wheelchair based on fuzzy reasoning[J]. ICIC Express Letters, Part B: Applications, 2021, 12 (9): 831- 838
[25]   刘智敏, 叶宝林, 朱耀东, 等 基于深度强化学习的交通信号控制方法[J]. 浙江大学学报: 工学版, 2022, 56 (6): 1249- 1256
LIU Zhimin, YE Baolin, ZHU Yaodong, et al Traffic signal control method based on deep reinforcement learning[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (6): 1249- 1256
[1] Dongxing CAO,Yanchao JIA,Xiangying GUO,Jiajia MAO. Structure design and motion analysis of bionic hexapod origami robot[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1543-1555.
[2] Zhiwei FAN,Kai JIA,Lei ZHANG,Fengshan ZOU,Zhenjun DU,Mingmin LIU. Optimal velocity planning for mobile robot based on simultaneous dynamic optimization[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1556-1564.
[3] Haipeng QIN,Rui QIN,Xiaofen SHI,Xiaoming ZHU. Motion control of quadruped robot based on model prediction[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1565-1576.
[4] Songlin HUANG,Xiujuan ZHENG,Xiaoyue TAN,Xing HU,Haiyan TU,Kang LI. Design of resistance neck rehabilitation robot system[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1479-1487.
[5] Dong CHEN,Weida LI,Hongmiao ZHANG,Juan LI. Ankle flexible exoskeleton based on force feedback admittance control[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 772-778.
[6] Yiming ZHANG,Wenguang YAO,Haijin CHEN. Dual-mechanism tangential obstacle avoidance of autonomous robots in dynamic environment[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 779-789.
[7] Mingjun SONG,Wen YAN,Yizhao DENG,Junran ZHANG,Haiyan TU. Light-weight algorithm for real-time robotic grasp detection[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 599-610.
[8] Yuting LIU,Shijie GUO,Shufeng TANG,Xuewei ZHANG,Tiantian LI. Path planning based on fusion of improved A* and ROA-DWA for robot[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 360-369.
[9] Wan-jin GUO,Wu-duan ZHAO,Qian-hui LI,Li-jun ZHAO,Chu-qing CAO. Ensemble probabilistic model based variable impedance for robotic grinding force control[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2356-2366.
[10] Yu-feng JIANG,Dong-sheng CHEN. Assembly strategy for large-diameter peg-in-hole based on deep reinforcement learning[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2210-2216.
[11] Ya-li XUE,Jin-ze YE,Han-yan LI. Multi-agent pursuit and evasion games based on improved reinforcement learning[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1479-1486.
[12] Wan-jin GUO,Wu-duan ZHAO,Su-yang YU,Li-jun ZHAO,Chu-qing CAO. Active adaptive online trajectory prediction for robotic grinding on surface without prior model[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1655-1666.
[13] Chong-liang ZHONG,Yun-feng LIU,Wei-dong ZHU,Fu-dong ZHU. Multi-orientation trajectory smoothing planning of robot for dental implant[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 1030-1037.
[14] Chao-fan ZHANG,Yi-ming QIAO,Lu CAO,Zhi-gang WANG,Shao-wei CUI,Shuo WANG. Tactile slip detection method based on neuromorphic modeling[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 683-692.
[15] Tong-li CHANG,Wan-bin FU. Human-robot matching design of self-aligning artificial knee joint[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 753-759.