Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (5): 1030-1037    DOI: 10.3785/j.issn.1008-973X.2023.05.019
Multi-orientation trajectory smoothing planning of robot for dental implant
Chong-liang ZHONG1(),Yun-feng LIU2,Wei-dong ZHU1,Fu-dong ZHU3,*()
1. School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
2. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
3. Stomatological Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
Download: HTML     PDF(1522KB) HTML
Export: BibTeX | EndNote (RIS)      


A highly automated dental implant surgery robot system was developed based on the optical positioning technology according to the requirements of dental implant surgery. The transformation of system space coordinate system was studied. The smooth orientation trajectory planning has an important impact on the accuracy and efficiency of the dental implant robot. Then a multi-orientation C2 continuous smooth interpolation algorithm was proposed based on the quaternion and rotation vector. The rotation vector was interpolated by smooth splicing of linear interpolation and the B-spline curve in three-dimensional space, and the corresponding quaternion would maintain the continuity in three-dimensional space. The multi-orientation C2 continuous interpolation calculation of unit quaternion was realized. The proposed B-spline multi-orientation smooth interpolation algorithm has C2 continuity through the experimental analysis and comparative verification is superior to the SQUAD algorithm in real-time performance and motion efficiency, and is suitable for multi-orientation trajectory planning of robot end effector.

Key wordsdental implant      dental implant surgery robot system      orientation trajectory planning      quaternion      multi-orientation smooth interpolation     
Received: 28 May 2022      Published: 09 May 2023
CLC:  TP 242  
Fund:  中国牙病防治基金会资助项目(A2021-008); 国家自然科学基金资助项目(52175280)
Corresponding Authors: Fu-dong ZHU     E-mail:;
Cite this article:

Chong-liang ZHONG,Yun-feng LIU,Wei-dong ZHU,Fu-dong ZHU. Multi-orientation trajectory smoothing planning of robot for dental implant. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 1030-1037.

URL:     OR


根据口腔种植手术的要求,基于光学定位技术开发了一套自动化程度较高的种植牙手术机器人系统,并且对系统空间坐标系转换进行研究. 平滑的姿态轨迹规划对口腔种植机器人工作时的精度和效率有着重要的影响,提出一种基于四元数和旋转向量的多姿态C2连续的平滑插值算法. 在三维空间中采用线性插值与B样条曲线平滑拼接的方式对旋转向量进行插值计算,所对应的四元数将保持在三维空间中的连续性,实现对单位四元数C2连续的多姿态平滑插值. 通过实验分析和对比验证,所提B样条多姿态平滑插值算法具有C2连续性,在实时性能和运动效率方面优于SQUAD算法,适用于机器人末端执行器的多姿态轨迹规划.

关键词: 口腔种植,  种植牙手术机器人系统,  姿态轨迹规划,  四元数,  多姿态平滑插值 
性能指标 参数
最大负载/kg 7.0
轴数 7
定位精度/mm ±0.1
转速精度/% ±2.0
重量/kg 25.5
防护等级 IP54
Tab.1 Performance parameters of LBR Med 7 R800 robot
技术指标 参数
定位误差/mm 0.12
最大帧频/Hz 250
平均延迟/ms <4.00
视场范围/mm 950~2 400
工具类型 被动式
工具最大数量/件 25
Tab.2 Technical parameters of Polaris Vega XT system
Fig.1 Dental implant surgery robot system
Fig.2 Coordinate system transformation relationship of surgical robot system
Fig.3 Construction of smooth transition curve
序号 $\theta /{\text{rad}}$ ${\boldsymbol{n}}$ ${\boldsymbol{q}}$ ${\boldsymbol{P}}$
$A$ ${\text{π/4} }$ $ \left[ {0.2,0.3,0.9327} \right] $ $ [0.9239,0.0765,0.1148,0.3569] $ $ \left[ {0.1571,0.2356,0.7325} \right] $
$B$ ${\text{π/3} }$ $ \left[ {1,0,0} \right] $ $ [0.8660,0.5000,0,0] $ $ \left[ {1.0472,0,0} \right] $
$C$ ${\text{π/6} }$ $ \left[ {0,1,0} \right] $ $ [0.9659,0,0.2588,0] $ $ \left[ {0,0.5236,0} \right] $
Tab.3 Information of key orientations
Fig.4 Quaternion multi-orientation interpolation curves for different algorithms
Fig.5 Augular, angular velocity and angular acceleration changing curves during multi-orientation interpolation
Fig.6 Rotation axis trajectory curves for different algorithms
关键姿态数量 ${t }{\text{/s} }$
3 0.618 18.200 5.690
50 10.200 451.0 169.0
100 21.1 917.0 346.0
Tab.4 Calculation time of different algorithms
关键姿态数量 ${\theta _{\text{d}}}{\text{/rad}}$
3 4.541 4.587 4.561
100 197.5 212.9 203.9
1000 2188 2468 2282
Tab.5 Total angular displacement of different algorithms
Fig.7 Change of euler angles in robot Cartesian space for different algorithms
[1]   HOWE M S, KEYS W, RICHARDS D Long-term (10-year) dental implant survival: a systematic review and sensitivity meta-analysis[J]. Journal of Dentistry, 2019, 84: 9- 21
doi: 10.1016/j.jdent.2019.03.008
[2]   OH S L, SHIAU H J, REYNOLDS M A Survival of dental implants at sites after implant failure: a systematic review[J]. The Journal of Prosthetic Dentistry, 2020, 123 (1): 54- 60
doi: 10.1016/j.prosdent.2018.11.007
[3]   DO T A, LE H S, SHEN Y W, et al Risk factors related to late failure of dental implant: a systematic review of recent studies[J]. International Journal of Environmental Research and Public Health, 2020, 17 (11): 3931
doi: 10.3390/ijerph17113931
[4]   CAO Z, QIN C, FAN S, et al Pilot study of a surgical robot system for zygomatic implant placement[J]. Medical Engineering and Physics, 2020, 75: 72- 78
doi: 10.1016/j.medengphy.2019.07.020
[5]   SINDHWANI S, CHAN W C W Nanotechnology for modern medicine: next step towards clinical translation[J]. Journal of Internal Medicine, 2021, 290 (3): 486- 498
doi: 10.1111/joim.13254
[6]   LI Y, HU J, TAO B, et al Automatic robot-world calibration in an optical-navigated surgical robot system and its application for oral implant placement[J]. International Journal of Computer Assisted Radiology and Surgery, 2020, 15 (10): 1685- 1692
doi: 10.1007/s11548-020-02232-w
[7]   FENG Y, FAN J C, TAO B X, et al An image-guided hybrid robot system for dental implant surgery[J]. International Journal of Computer Assisted Radiology and Surgery, 2022, 17 (1): 15- 26
doi: 10.1007/s11548-021-02484-0
[8]   SAVERIANO M, FRANZEL F, LEE D. Merging position and orientation motion primitives [C]// 2019 International Conference on Robotics and Automation (ICRA). Montreal: IEEE, 2019: 7041-7047.
[9]   LI Y, HUANG T, CHETWYND D G An approach for smooth trajectory planning of high-speed pick-and-place parallel robots using quintic B-splines[J]. Mechanism and Machine Theory, 2018, 126: 479- 490
doi: 10.1016/j.mechmachtheory.2018.04.026
[10]   王志强. 基于NURBS的Delta机器人时间最优轨迹规划算法研究与实现[D]. 哈尔滨: 哈尔滨工业大学, 2020: 36-42.
WANG Zhi-qiang. Research and implementation of Delta robot time optimal trajectory planning algorithm based on NURBS [D]. Harbin: Harbin Institute of Technology, 2020: 36-42.
[11]   HEMINGWAY E G, OREILLY O M Perspectives on Euler angle singularities, gimbal lock, and the orthogonality of applied forces and applied moments[J]. Multibody System Dynamics, 2018, 44 (1): 31- 56
doi: 10.1007/s11044-018-9620-0
[12]   刘松国, 朱世强, 王宣银, 等 基于四元数和B样条的机械手平滑姿态规划器[J]. 浙江大学学报: 工学版, 2009, 43 (7): 1192- 1196
LIU Song-guo, ZHU Shi-qiang, WANG Xuan-yin, et al Smooth orientation planner for manipulators based on quaternion and B-spline[J]. Journal of Zhejiang University: Engineering Science, 2009, 43 (7): 1192- 1196
[13]   KONG M, JI C, CHEN Z, et al. Application of orientation interpolation of robot using unit quaternion [C]// 2013 IEEE International Conference on Information and Automation (ICIA). Yinchuan: IEEE, 2013: 384-389.
[14]   OZGUR E, MEZOUAR Y Kinematic modeling and control of a robot arm using unit dual quaternions[J]. Robotics and Autonomous Systems, 2016, 77: 66- 73
doi: 10.1016/j.robot.2015.12.005
[15]   TAN J, XING Y, FAN W, et al Smooth orientation interpolation using parametric quintic-polynomial-based quaternion spline curve[J]. Journal of Computational and Applied Mathematics, 2018, 329: 256- 267
doi: 10.1016/
[16]   SHOEMAKE K Animating rotation with quaternion curves[J]. Computer Graphics, 1985, 19 (3): 245- 254
doi: 10.1145/325165.325242
[17]   KIM M J, KIM M S, SHIN S Y A general construction scheme for unit quaternion curves with simple high order derivatives[J]. Computer Graphics, 1995, 29 (3): 369- 376
[18]   谢文雅. 基于四元数的工业机器人姿态规划与插补算法的研究[D]. 武汉: 华中科技大学, 2017: 22-31.
XIE Wen-ya. Research of the orientation planning and interpolation for industrial robot based on quaternion [D]. Wuhan: Huazhong University of Science and Technology, 2017: 22-31.
[19]   NIU X, TIAN W C2-continuous orientation trajectory planning for robot based on spline quaternion curve[J]. Assembly Automation, 2018, 38 (3): 282- 290
doi: 10.1108/AA-04-2017-050
[20]   PU Y, SHI Y, LIN X, et al C2-continuous orientation planning for robot end-Effector with B-Spline curve based on logarithmic quaternion[J]. Mathematical Problems in Engineering, 2020, 2020: 1- 16
[21]   LEGNANI G, FASSI I, TASORA A, et al A practical algorithm for smooth interpolation between different angular positions[J]. Mechanism and Machine Theory, 2021, 162 (2): 104341
[22]   LOUBEAU E, ONICIUC C On the biharmonic and harmonic indices of the Hopf map[J]. Transactions of the American Mathematical Society, 2007, 359 (11): 5239- 5256
doi: 10.1090/S0002-9947-07-03934-7
[1] Hui DUAN,Zhi-li ZHANG,Zhao-fa ZHOU,Ze-qian XU,Zhi-qian ZHAO,Shao-di WANG. Three-axis rotation angle solving method of star sensor under multi-vector information[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2514-2522.
[2] Xiao-hang WU,Ke-mao MA. Information fusion algorithm with Student’s t filtering framework[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 581-588.
[3] HUANG Shui hua, JIANG Pei,WEI Wei, XIANG Ji, PENG Yong gang. Attitude pointing control of manipulator based on quaternion[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 173-179.
[4] OUYANG Liu, XU Jin, GONG Xiao-jin, LIU Ji-lin. Optimization of visual odometry based on uncertainty analysis[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1572-1579.