Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (12): 2514-2522    DOI: 10.3785/j.issn.1008-973X.2022.12.021
    
Three-axis rotation angle solving method of star sensor under multi-vector information
Hui DUAN(),Zhi-li ZHANG,Zhao-fa ZHOU*(),Ze-qian XU,Zhi-qian ZHAO,Shao-di WANG
School of Missile Engineering, Rocket Force University of Engineering, Xi’an 710025, China
Download: HTML     PDF(989KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to improve the real-time performance and solution accuracy of star sensor, based on multi-vector information, a quaternion representation method for solving three-axis rotation angle of star sensor was proposed, and the method was derived in detail theoretically. Based on the three-dimensional coordinates of a single starlight vector in celestial coordinate system and star sensor coordinate system, the direction cosine matrix transformation form was transformed into quaternion transformation form. The quadratic quaternion transformation form was reduced in order to facilitate the subsequent solution. Considering the weight of different starlight vectors, the information of all starlight vectors was combined to solve the three-axis rotation angle of the star sensor. A specific solution was given, aiming at the iteration uncertainty and the direction singularity of quaternion vector in the process of solving three-axis rotation angle, The performance of the proposed algorithm was compared with that of the traditional algorithm. Simulation results show that the proposed algorithm has faster solving speed and higher accuracy in solving three-axis rotation angle than the traditional algorithm.



Key wordsrotation angle      star sensor      quaternion      singularity      real time     
Received: 29 December 2021      Published: 03 January 2023
CLC:  V 448.22  
Fund:  航空科学基金资助项目(201808U8004)
Corresponding Authors: Zhao-fa ZHOU     E-mail: 1020423896@qq.com;3199148797@qq.com
Cite this article:

Hui DUAN,Zhi-li ZHANG,Zhao-fa ZHOU,Ze-qian XU,Zhi-qian ZHAO,Shao-di WANG. Three-axis rotation angle solving method of star sensor under multi-vector information. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2514-2522.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.12.021     OR     https://www.zjujournals.com/eng/Y2022/V56/I12/2514


多矢量信息下的星敏感器三轴旋转角求解方法

为了提高星敏感器的实时性能与解算精度,基于多矢量信息,提出四元数表示形式下的星敏感器三轴旋转角求解方法,从理论上对所提方法进行详细推导. 基于单个星光矢量在天球系与星敏系中的三维坐标,将方向余弦阵变换形式转变成四元数变换形式. 降次二次四元数变换形式,以便后续求解. 考虑不同星光矢量的权重,联立所有星光矢量的信息求解星敏感器三轴旋转角,给出解决三轴旋转角求解过程中的迭代不确定性和四元数矢量方向奇异性的具体方案. 将所提方法与传统方法的性能进行对比分析. 仿真结果表明,相比传统方法,所提方法具有更快的解算速度和更高的三轴旋转角求解精度.


关键词: 旋转角,  星敏感器,  四元数,  奇异性,  实时性 
Fig.1 Schematic diagram of starlight vector imaging
Fig.2 Three-axis attitude angle error curve of different algorithms under 1.0×10−3 standard deviation of noise
算法 σA/(°)
σs=1.0×10?2 σs=1.0×10?3 σs=1.0×10?4 σs=1.0×10?5
SVD 2.071×10?1 2.751×10?2 3.084×10?3 4.055×10?4
LS 3.679×10?1 3.794×10?2 4.286×10?3 4.622×10?4
QUEST 2.071×10?1 2.751×10?2 3.084×10?3 4.055×10?4
本研究 2.071×10?1 2.751×10?2 3.084×10?3 4.055×10?4
Tab.1 Standard deviation of attitude angle error for different algorithms with different noise standard deviations
Fig.3 Time consumption curve of different algorithms under 1.0×10−3 standard deviation of noise
算法 t/s
σs=1×10?2 σs=1×10?3 σs=1×10?4 σs=1×10?5
SVD 6.021×10?5 5.971×10?5 6.153×10?5 6.568×10?5
LS 9.354×10?5 9.219×10?5 9.612×10?5 9.674×10?5
QUEST 5.721×10?5 5.671×10?5 5.953×10?5 5.368×10?5
本研究 3.284×10?5 3.322×10?5 3.268×10?5 3.109×10?5
Tab.2 Time-consuming table for different algorithms with different noise standard deviations
[1]   CHANG L B, QIN F J, LI A A novel backtracking scheme for attitude determination-based initial alignment[J]. IEEE Transactions on Automation Science and Engineering, 2015, 12 (1): 384- 390
doi: 10.1109/TASE.2014.2346581
[2]   DU S, GAO Y Inertial aided cycle slip detection and identification for integrated PPP GPS and INS[J]. Sensors, 2012, 12 (11): 14344- 14362
doi: 10.3390/s121114344
[3]   MARKLEY F L, MORTARI D How to estimate attitude from vector observations[J]. Advance Astronomy Science, 2000, 103: 1979- 1996
[4]   YANG Y, ZHOU Z An analytic solution to Wahba’s problem[J]. Aerospace Science and Technology, 2013, 30 (1): 46- 49
doi: 10.1016/j.ast.2013.07.002
[5]   SHUSTER M D, OH S D Three-axis attitude determination from vector observations[J]. Journal of Guidance Control, 1981, 4 (1): 70- 77
doi: 10.2514/3.19717
[6]   MORTARI D ESOQ: a closed-form solution to the Wahba problem[J]. The Journal of the Astronomy Sciences, 1997, 45: 195- 204
[7]   HORN R A, JOHNSON C R. Matrix analysis [M]. Cambridge: Cambridge University Press, 1985: 57-73.
[8]   FARRELL J L, STUELPNAGEL J C, WESSNER R H, et al A least squares estimate of spacecraft attitude[J]. SIAM Review, 1966, 8 (3): 384- 386
doi: 10.1137/1008080
[9]   ZHANG Y J, ZHENG M T, XIONG J X, et al On-orbit geometric calibration of ZY-3 three-linear array imagery with multistrip data sets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52 (1): 224- 234
doi: 10.1109/TGRS.2013.2237781
[10]   RATNAWEERA A, HALGAMUGE S K, WATSON H C Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (3): 240- 255
doi: 10.1109/TEVC.2004.826071
[11]   WU J, ZHOU Z B, GAO B, et al Fast linear quaternion attitude estimator using vector observations[J]. IEEE Transactions on Automation Science and Engineering, 2018, 15 (1): 307- 319
doi: 10.1109/TASE.2017.2699221
[12]   LUO L, HUANG Y L, ZHANG Z, et al A position loci-based in-motion initial alignment method for low-cost attitude and heading reference system[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 7500618
[13]   ZHOU X R, XU X, YAO Y Q, et al A robust quaternion Kalman filter method for MIMU/GPS in-motion alignment[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 8503109
[14]   FRASER C S, HANLEY H B Bias compensation in rational functions for Ikonos satellite imagery[J]. Photogrammetric Engineering and Remote Sensing, 2003, 69 (1): 53- 57
doi: 10.14358/PERS.69.1.53
[15]   WU Y H, GAO Y, LIN J W, et al Low-cost, high-performance monocular vision system for air bearing table attitude determination[J]. Journal of Spacecraft and Rockets, 2014, 51 (1): 66- 75
doi: 10.2514/1.A32465
[16]   WU J Real-time magnetometer disturbance estimation via online nonlinear programming[J]. IEEE Sensors Journal, 2019, 19 (12): 4405- 4411
doi: 10.1109/JSEN.2019.2901925
[17]   WU J, ZHOU Z B, FOURATE H, et al Generalized linear quaternion complementary filter for attitude estimation from multisensor observations: an optimization approach[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16 (3): 1330- 1343
doi: 10.1109/TASE.2018.2888908
[18]   ZHANG G, JIANG Y H, LI D, et al In-orbit geometric calibration and validation of ZY-3 linear array sensors[J]. The Photogrammetric Record, 2014, 29 (145): 68- 88
doi: 10.1111/phor.12052
[19]   LEFFERTS E J, MARKLEY F L, SHUSTER M D Kalman filtering for spacecraft attitude estimation[J]. Journal of Guidance, 1982, 5 (5): 417- 429
doi: 10.2514/3.56190
[20]   LI J C, GAO W, ZHANG Y, et al Gradient descent optimization-based self-alignment method for stationary SINS[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68 (9): 3278- 3286
doi: 10.1109/TIM.2018.2878071
[21]   MORTARI D, ROMOLI A. StarNav III: a three field of view star tracker [C]// IEEE Aerospace Conference Proceeding. Big Sky: IEEE, 2002: 47-67.
[22]   DOUIK A, LIU X, BALLAL T, et al Precise 3-D GNSS attitude determination based on Riemannian manifold optimization algorithms[J]. IEEE Transactions on Signal Processing, 2020, 68: 284- 299
doi: 10.1109/TSP.2019.2959226
[23]   COLE C L, CRASSIDIS J L Fast star-pattern recognition using planar triangles[J]. Journal of Guidance, Control, and Dynamics, 2006, 29 (1): 64- 71
[24]   LIEBE C C Star trackers for attitude determination[J]. IEEE Aerospace and Electronic Systems Magazine, 1995, 10 (6): 10- 16
doi: 10.1109/62.387971
[25]   KUDVA P, THROCKMORTON A Attitude determination studies for the earth observation system AM1 (EOS-AM1) mission[J]. Journal of Guidance, Control, and Dynamic, 1996, 19 (6): 1326- 1331
doi: 10.2514/3.21789
[1] Xiao-hang WU,Ke-mao MA. Information fusion algorithm with Student’s t filtering framework[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 581-588.
[2] WANG Jun, LI De jun, XIAO Ju lin, YANG Can jun, SU Feng ge. Design and realization of underwater environment real time monitoring system for ocean observatory network[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 193-200.
[3] HUANG Shui hua, JIANG Pei,WEI Wei, XIANG Ji, PENG Yong gang. Attitude pointing control of manipulator based on quaternion[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 173-179.
[4] OUYANG Liu, XU Jin, GONG Xiao-jin, LIU Ji-lin. Optimization of visual odometry based on uncertainty analysis[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1572-1579.
[5] AI Qing-lin, ZU Shun-jiang, XU Fang. Review of kinematics and singularity of parallel manipulator[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(8): 1345-1359.
[6] YUAN Xing-fei, ZHOU Lian. Singularity and kinematic bifurcation analysis of pin-bar mechanisms
based on submatrix method of mechanism displacement mode
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(6): 1074-1081.
[7] PENG Tie-zhu, LI Ling-feng. Analysis of a novel 3UPS+1RPU parallel mechanism without singularity[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(11): 2056-2062.