Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (11): 2290-2298    DOI: 10.3785/j.issn.1008-973X.2024.11.010
    
Low-jitter fast-locked 10.9−12.0 GHz charge-pump phase-locked loop
Yongzheng ZHAN1(),Rengang LI1,Tuo LI1,Xiaofeng ZOU1,Yulong ZHOU1,Qingsheng HU2,3,Lianming LI3
1. Shandong Yunhai Guochuang Cloud Computing Equipment Industry Innovation Limited Company, Jinan 250101, China
2. Institute of RF- and OE-ICs, Southeast University, Nanjing 210096, China
3. School of Information Science and Engineering, Southeast University, Nanjing 210096, China
Download: HTML     PDF(3230KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A low-jitter high-speed charge-pump phase-locked loop (CPPLL) suitable for high-speed SerDes serial link was designed using 65 nm CMOS technology. Loop bandwidth and circuit structure of voltage-controlled oscillator (VCO), charge pump (CP), phase frequency detector (PFD) were optimized to reduce jitter caused by voltage ripple and internal noise. CPPLL can achieve a stable clock signal with the smaller jitter offset while meeting the wide frequency range and high speed requirements of SerDes link. Chip area including the entire pads is 0.309 mm2. The measurement results show that CPPLL can generate a 10.9-12 GHz clock signal and exhibit a phase noise of ?111.47 dBc/Hz and a reference spur of ?25.14 dBc and a figure-of-merit (FoM) of ?223.5 dB at 10 MHz offset. It takes 600 μs to generate a stable 11.3 GHz clock signal, and its RMS jitter is 973.9 fs when the reference frequency is 706.25 MHz, which is approximately 0.065 UI. The power consumption is 47.3 mW at the supply voltage of 1.2 V. The proposed phase-locked loop (PLL) is suitable for high-speed communication link systems at 20 Gb/s and above.



Key wordsvoltage-controlled oscillator (VCO)      charge pump      low jitter      serial link      high speed     
Received: 08 October 2023      Published: 23 October 2024
CLC:  TN 432  
Fund:  山东省自然科学基金资助项目(ZR2022QF146);山东省自然科学基金创新发展联合基金资助项目(ZR2023LZH004);中国博士后科学基金资助项目(2024M751268).
Cite this article:

Yongzheng ZHAN,Rengang LI,Tuo LI,Xiaofeng ZOU,Yulong ZHOU,Qingsheng HU,Lianming LI. Low-jitter fast-locked 10.9−12.0 GHz charge-pump phase-locked loop. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2290-2298.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.11.010     OR     https://www.zjujournals.com/eng/Y2024/V58/I11/2290


低抖动快锁定10.9~12.0 GHz电荷泵锁相环

基于65 nm CMOS 工艺,设计适用于高速SerDes串行链路的低抖动高速电荷泵锁相环(CPPLL)电路. 通过优化环路带宽以及压控振荡器(VCO)、电荷泵和鉴频鉴相器的电路结构, 抑制电压纹波和内部噪声引起的抖动, 以在满足SerDes链路需要的宽频范围和高速要求的同时, 电荷泵锁相环能够获得较小的抖动偏差和稳定的时钟信号. 包括整个焊盘在内的芯片面积为0.309 mm2. 测试结果表明, 电荷泵锁相环能够实现10.9~12 GHz的输出时钟信号, 其在10 MHz频偏处的相位噪声、参考杂散和品质因数(FoM)分别为?111.47 dBc/Hz、?25.14 dBc和?223.5 dB. 当输入参考频率为706.25 MHz 时, CPPLL能够在600 μs后输出稳定的11.3 GHz时钟信号, 且RMS抖动为973.9 fs, 约为0.065 UI. 在电源电压为1.2 V下, 电路的功耗为47.3 mW. 所设计的锁相环(PLL)电路能够适用于20 Gb/s及以上的高速通信链路系统.


关键词: 压控振荡器(VCO),  电荷泵,  低抖动,  串行链路,  高速 
Fig.1 Block diagram of DLL
Fig.2 Block diagram of LC-VCO CPPLL
Fig.3 Phase noise curve of LC-VCO CPPLL
Fig.4 Lock-time curve under different loop bandwidthes
Fig.5 Circuit diagram of complementary cross-coupled negative-resistance LC-VCO
Fig.6 Output waveform of VCO with cross-coupled transistor
Fig.7 Voltage-controlled characteristic curve of VCO under different corners
Fig.8 Phase noise of VCO
Fig.9 Circuit diagram of cascade-based CP
Fig.10 Characteristic curve of CP current matching
Fig.11 Circuit diagram of TSPC-based PFD
Fig.12 Charge process cascading PFD with CP
Fig.13 Leakage current curve of CP
Fig.14 Chip micrograph
Fig.15 Measurement platform of CPPLL
Fig.16 Frequency locking curve of CPPLL at 12.5 GHz for different corner
Fig.17 Jitter performance of CPPLL at SS corner
Fig.18 Transient measurement curve of CPPLL
Fig.19 Measurement curve of CPPLL phase noise
Fig.20 Measurement curve of CPPLL reference spur
文献VCO锁频范围/GHzRMS /ps相位噪声/(dB·Hz?1)参考杂散/dB功耗/mW面积/mm2FoM/dB
本文LC10.9~12.00.9739?111.47@10 MHz?25.1447.30.309?223.5
文献[24]LC1.25~3.1252.1743.6?216.8
文献[25]LC6.3~8.71.2?116.6@1 MHz<?50500.72?161.4
文献[26]LC3.60.043?141.1@1 MHz?80.347.270.497?258.7
文献[27]Ring3.27.5?107.9@10 MHz?45.52.730.047?218.1
文献[28]Ring1.25~3.1251.65?47.6328.80.384?221.1
文献[29]Ring1.2~2.50.25?124.8@1 MHz?468.50.0066?242.7
Tab.1 Summary and comparison of CPPLL performance using 65 nm technology
[1]   ROSHAN-ZAMIR A, IWAI T, FAN Y H, et al. A 56 Gb/s PAM4 receiver with low-overhead threshold and edge-based DFE FIR and IIR-tap adaptation in 65nm CMOS [C]// IEEE Custom Integrated Circuits Conference . San Diego: IEEE, 2018: 1-4.
[2]   SEGAL Y, LAUFER A, KHAIRI A, et al. A 1.41 pJ/b 224 Gb/s PAM-4 SerDes receiver with 31dB loss compensation [C]// International Solid-State Circuits Conference . San Francisco: IEEE, 2022: 114-115.
[3]   POON C F, ZHANG W F, CHO J H, et al A 1.24-pJ/b 112-Gb/s (870 Gb/s/mm) transceiver for in-package links in 7-nm FinFET[J]. IEEE Journal of Solid-State Circuits, 2022, 57 (4): 1199- 1210
doi: 10.1109/JSSC.2022.3141802
[4]   LU P. A 25.6-27.5GHz phase-locked loop for SerDes transceiver clocking in 5nm FinFET [C]// IEEE Nordic Circuits and Systems Conference . Oslo: IEEE, 2021: 1-4.
[5]   辛可为, 吕方旭, 王建业, 等 适用于4通道100 Gbps SerDes的两级架构正交12.5 GHz低功耗低抖动时钟发生器[J]. 空军工程大学学报: 自然科学版, 2019, 20 (5): 64- 69
XIN Kewei, LV Fangxu, WANG Jianye, et al A 12.5 GHz clock generator applicable for 4-way 100 Gbps high-speed serial interface circuits[J]. Journal of Air Force Engineering University: Natural Science Edition, 2019, 20 (5): 64- 69
[6]   李沛杰, 沈剑良, 苑红晓, 等 一种应用于软件定义互连系统的多协议SerDes电路[J]. 电子学报, 2021, 49 (4): 817- 823
LI Peijie, SHEN Jianliang, YUAN Hongxiao, et al A multi-protocol SerDes circuit for the application in software defined interconnection system[J]. ACTA Electronica Sinica, 2021, 49 (4): 817- 823
[7]   SAURABH K, KUMAR S Y A low-phase-noise self-aligned sub-harmonically injection-locked PLL using aperture phase detector-based DLL windowing technique[J]. IEEE Access, 2023, 11: 6641- 6655
doi: 10.1109/ACCESS.2023.3237539
[8]   YANG X, LIU F, HUO Z L Wide-range and high-accuracy four-phase DLL with the adaptive-bandwidth scheme[J]. Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2022, 49 (1): 194- 201
[9]   BAE W. State-of-the-art circuit techniques for low-jitter phase-locked loops: advanced performance benchmark FOM based on an extensive survey [C]// IEEE International Symposium on Circuits and Systems . Daegu: IEEE, 2021: 1-5.
[10]   LIU H L, SUN Z, HUANG H Y, et al A 265-mu W fractional-N digital PLL with seamless automatic switching sub-sampling/sampling feedback path and duty-cycled frequency-locked loop in 65-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2019, 54 (12): 256- 257
[11]   LIU L X, JI Y L, LIAO X F, et al A 0.8-V, 2.55-GHz, 2.62-mW charge-pump PLL with high spectrum purity[J]. IEEE Transactions on Very Large Scale Integration Systems, 2022, 30 (2): 113- 122
doi: 10.1109/TVLSI.2022.3140457
[12]   ZHANG Z, YANG J, LIU L, et al A 0.9-2.25 GHz sub-0.2-mW/GHz compact low-voltage low-power hybrid digital PLL with loop bandwidth-tracking technique[J]. IEEE Transactions on Very Large Scale Integration Systems, 2018, 26 (5): 933- 944
doi: 10.1109/TVLSI.2018.2797280
[13]   吴金, 孙亚伟, 彭杰, 等 一种应用于阵列TDC的低抖动锁相环设计[J]. 电子学报, 2020, 48 (9): 1703- 1710
WU Jin, SUN Yawei, PENG Jie, et al Design of a low jitter phase locked loop for array TDC[J]. ACTA Electronica Sinica, 2020, 48 (9): 1703- 1710
[14]   邓涵, 韦雪明, 尹仁川, 等 一种自适应可重构宽带低抖动锁相环时钟[J]. 微电子学, 2023, 53 (1): 89- 94
DENG Han, WEI Xueming, YIN Renchuan, et al A wideband low jitter PLL clock with adaptive reconfigurable charge pump[J]. Microelectronics, 2023, 53 (1): 89- 94
[15]   FISCHETTE D. A 45-nm SOI-CMOS dual-PLL processor clock system for multi-protocol I/O [C]// IEEE International Solid-State Circuits Conference. San Francisco: IEEE, 2010: 246-248.
[16]   ZHAN Y Z, LI T, ZOU X F, et al. Low-power 25Gb/s 16: 1 multiplexer for 400Gb/s ethernet PHY [C]// 2nd International Conference on Applied Physics and Computing . Ottawa: Elsevier, 2021.
[17]   ZHANG Y, WEN Z P, HOU X P. A 0.78mW inductor-less 21GHz CML frequency divider in 65nm CMOS [C]// IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference . Chengdu: IEEE, 2019: 1395-1399.
[18]   KUNDERT K. Predicting the phase noise and jitter of PLL based frequency synthesizers [Z]. Designer’s Guide Consulting, Inc. 2006.
[19]   SOPHIYA S S, YELLAMPALLI S S. Design of 6.7GHz~7. 518GHz cross coupled LC-VCO in 180nm CMOS technology [C]// 5th International Conference on Computing Methodologies and Communication . Erode: IEEE, 2021: 665-671.
[20]   MAHESHWARI N, CHAUHAN P S, PANDA D K. Design and optimization of switched capacitor array based differential CMOS LC VCO for wide band application [C]// International Conference on Information, Communication, Instrumentation and Control . Indore: IEEE, 2017.
[21]   SAMARAS D, HATZOPOULOS A. A low-power low-noise 65nm charge pump using mismatch compensation and smoothing capacitor [C]// 11th International Conference on Modern Circuits and Systems Technologies . Bremen: IEEE, 2022: 1-4.
[22]   GHASEMIAN H, BAHRAMI A, JAMADI B, et al. Implement of two new high-speed low-power PFDs with low blind zone and dead zone in 65nm CMOS technology [C]// 28th Iranian Conference on Electrical Engineering . Tabriz: IEEE, 2020: 1-6.
[23]   BEUKEMA T. Topics on design and analysis of high data rate SerDes system [EB/OL]. [2019-11-30]. https://picture.iczhiku.com/resource/eetop/SYKhWDtRRtzOyvvn.pdf.
[24]   YUAN H, CHEN J, LIANG B, et al. A radiation-immune low-jitter high-frequency PLL for SerDes [C]// CCF National Conference on Computer Engineering and Technology . Xiamen: Elsevier, 2017: 45-51.
[25]   ZHOU P Z, WU L, LI C, et al. A 6.3-8.7 GHz phase-locked loop in 65nm CMOS [C]// IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition . Guangzhou: Elsevier, 2021: 1-4.
[26]   HUANG Y B, CHEN Y, ZHAO B, et al A 3.6-GHz type-II sampling PLL with a differential parallel-series double-edge S-PD scoring 43.1-fs RMS jitter, −258.7-dB FOM, and −75.17-dBc reference spur[J]. IEEE Transactions on Very Large Scale Integration Systems, 2023, 31 (2): 188- 198
doi: 10.1109/TVLSI.2022.3229342
[27]   KIM D, CHO S H. A supply noise insensitive PLL with a rail-to-rail swing ring oscillator and a wideband noise suppression loop [C]// Symposium on VLSI Circuits . Kyoto: Elsevier, 2017: 180-181.
[28]   YUAN H Z, GUO Y, LIU Y, et al A self-biased low-jitter process-insensitive phase-locked loop for 1.25Gb/s-6.25Gb/s SerDes[J]. Chinese Journal of Electronics, 2018, 27 (5): 1009- 1014
doi: 10.1049/cje.2018.02.003
[29]   GROUT K, KITCHEN J A dividerless ring oscillator PLL with 250fs integrated jitter using sampled low pass filter[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67 (11): 2337- 2341
[1] ZHONG Qi, ZHANG Bin, HONG Hao-cen, YANG Hua-yong. Three power sources excitation control strategy of high speed on/off valve based on current feedback[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 8-15.
[2] XU Wen-yuan, MENG Jun, ZHAO Xi-meng. Non-contact monitoring of ambulatory blood pressure based on high speed camera[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(10): 2077-2083.
[3] ZHANG De sheng, SHI Lei, CHEN Jian, PAN Qiang, SHI Wei dong. Experimental analysis on characteristic of cavitation in tip region of axial flow pump impeller[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1585-1592.
[4] LI Te,Rui Zhi yuan,LEI Chun li,GUO Jun feng,HU Chi bing. Simulation of thermal characteristics of high speed spindle considering air gap variation[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 941-948.
[5] CHEN Da wei, YAO Shuan bao, LIU Shao qing, GUO Di long. Inverse design for aerodynamic shape of high speed train nose[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(4): 631-640.
[6] HUANG Wei di, GAN Chun biao, YANG Shi xi. Dynamic modeling and vibration response analysis of high speed motorized spindle[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(11): 2195-2206.
[7] DU Rui long, CHEN Ying long, ZHOU Hua, WANG Jia. New distributing mechanism for high speed single-piston axial piston pump[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1902-1910.
[8] SHA Dong hui, LUO Zhong yang, LU Meng shi, JIANG Jian ping, FANG Meng xiang, ZHOU Dong, CHEN Hao. Electrostatic agglomeration of positively charged particles observed by microscopic visualization system[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 93-101.
[9] CHEN Liang liang,ZHU Chang sheng,JIANG Ke jian. Rotor strength analysis for high speed surface mounted permanent magnet synchronous motor with filled blocks between magnetic poles[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1738-1748.
[10] LUO Le,ZHENG Xu,LV Yi,HAO Zhi yong. Aerodynamic noise analysis of high speed train with pantograph system[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2179-2185.
[11] MA Chi, YANG Jun, ZHAO Liang, MEI Xue song, SHI Hu, WANG Xin meng. Thermal characteristics analysis and experimental study on high speed spindle system[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2092-2102.
[12] ZHAO Wei,HUANG Yu-zhao,YU Zhe-qing,RUAN Jian. Hydraulic power system of high speed ejection experiment device[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(5): 799-804.
[13] WANG Rong-hua, MENG Jian-yi, CHEN Zhi-jian, YAN Xiao-lang. High speed address translation method based on the memory access region attribute[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(2): 348-353.
[14] QUAN Li, CHENG Ai-lian, PAN Yun, DING Yong, YAN Xiao-lang. Bypassed channels based differentiated service implementation method for network-on-chip[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(6): 957-968.
[15] WANG Bao-jun, BI Liu-xin, CHEN Liang-liang, YANG Ping-xi, ZHU Chang-sheng. Strength analysis of a surface mounted high speed permanent magnetic machine rotor with carbon fiber bandage[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(12): 2101-2110.