Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2017, Vol. 51 Issue (10): 2077-2083    DOI: 10.3785/j.issn.1008-973X.2017.10.024
Telecommunications Technology     
Non-contact monitoring of ambulatory blood pressure based on high speed camera
XU Wen-yuan, MENG Jun, ZHAO Xi-meng
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(2155KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A non-contact and non-invasive acquisition of ambulatory blood pressure was achieved based on a high speed camera. The functional relationship among blood pressure, phase difference of pulse wave and heart rate was obtained through theoretical deduction. Phase difference of pulse wave and heart rate were acquired through the high speed camera based on imaging photoplethysmographic. Parameters of the functional relationship were determined through curve fitting based on the functional relationship and the acquired phase difference and heart rate. Ambulatory blood pressure was obtained through the high speed camera. Error analysis was processed with reference to an Omron intelligent electronic sphygmomanometer in order to verify the accuracy of blood pressure acquired through the high speed camera. The obtained error of systolic blood pressure varied from -4.03 to 8.44 percent. The obtained error of diastolic blood pressure varied from -6.58 to 8.90 percent.



Received: 01 September 2016      Published: 27 September 2017
CLC:  TN911  
Cite this article:

XU Wen-yuan, MENG Jun, ZHAO Xi-meng. Non-contact monitoring of ambulatory blood pressure based on high speed camera. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(10): 2077-2083.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2017.10.024     OR     http://www.zjujournals.com/eng/Y2017/V51/I10/2077


基于高速摄像机的动态血压非接触获取

为了实现基于高速摄像机的非接触、非介入式的动态血压获取,对血压与脉搏信号相位差、心率之间的函数关系进行理论推导;基于成像式光电容积描记技术,实现了通过高速摄像机非接触获取脉搏信号的相位差和心率;基于血压与脉搏信号相位差、心率之间的函数关系以及基于高速摄像机所获得的脉搏信号相位差和心率,通过曲线拟合得到血压与脉搏信号相位差、心率之间的函数关系的参数值,实现了基于高速摄像头的动态血压的非接触获取.为了验证基于高速摄像头获得的血压的准确性,以欧姆龙智能电子血压仪获得的血压为参照进行误差分析,所得的收缩压的误差为-4.03%~8.44%,舒张压的误差为-6.58%~8.90%.

[1] 王继光.24 h动态血压监测:适用人群及临床意义[J].中华高血压杂志,2014, 22(7):614-615. WANG Ji-guang. Twenty-four-hour ambulatory blood pressure monitoring:applicable crowd and its clinical significance[J]. Chinese Journal of Hypertension, 2014, 22(7):614-615.
[2] O'BRIEN E, PARATI G, STERGIOU G, et al. European society of hypertension position paper on ambulatory blood pressure monitoring[J]. Journal of Hypertension, 2013, 31(9):1731-1768.
[3] O'BRIEN E. Twenty-four-hour ambulatory blood pressure measurement in clinical practice and research:a critical review of a technique in need of implementation[J]. Journal of Internal Medicine, 2011, 269(5):478-495.
[4] 非接触、非介入式改变医疗保健[DB/OL].(2013-07-25)[2016-08-28].http://news.cecb2b.com/info/20130725/920756.shtml.
[5] Non-contact and non-invasive changes medical insurance.[DB/OL]. (2013-07-25)[2016-08-28]. http://news.cecb2b.com/info/20130725/920756.shtml.
[6] 张政波,吴太虎.无创血压测量技术与进展[J].中国医疗器械杂志,2003,27(3):196-199. ZHANG Zheng-bo, WU Tai-hu. Noninvasive blood pressure measurement technology and its progress[J]. Chinese Journal of Medical Instrumentation, 2003,27(3):196-199.
[7] 郑理华,窦建洪,何兴华,等.无创血压测量技术的改进与进展[J].中国医学装备,2013, 10(3):49-52. ZHENG Li-hua, DOU Jian-hong, HE Xing-hua, et al. Improvement and progress of noninvasive blood pressure measurement technology[J]. China Medical Equipment, 2013, 10(3):49-52.
[8] MCCOMBIE D B, SHALTISP A, REISNER A T, et al. Adaptive hydrostatic blood pressure calibration:Development of a wearable, autonomous pulse wave velocity blood pressure monitor[C]//200729th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Lyon:IEEE, 2007:370-373.
[9] 李申龙,李毅彬,李洪阳,等.基于脉搏波相位差的无创连续血压测量方法[J].传感器与微系统,2016, 35(1):62-64. LI Shen-long, LI Yi-bin, LI Hong-yang, et al. Non-invasive continuous blood pressure measurement based on phase difference of pulse wave[J]. Transducer and Microsystem Technologies, 2016, 35(1):62-64.
[10] 向海燕,俞梦孙.用脉搏波传导时间实现血压连续测量[J].医疗卫生装备,2006,27(2):19-21. XIANG Hai-yan, YU Meng-song. Measurement of continuous blood pressure via pulse wave translation time[J]. Medical Equipment, 2006, 27(2):19-21.
[11] ZAKARIA N A, SHARIFMUDDIN N B, RIDZWAN W M F W M, et al. Pulse wave transit time and its relationship with systolic blood pressure[C]//6th World Congress of Biomechanics (WCB 2010). Singapore:Springer, 2010:1354-1357.
[12] SUN Y, PAPIN C, AZORIN-PERIS V, et al. Use of ambient light in remote photoplethysmographic systems:comparison between a high-performance camera and a low-cost webcam[J]. Journal of Biomedical Optics, 2012, 17(3):0370051-03700510.
[13] SUN Y, HU S, AZORIN-PERIS V V, et al. Noncontact imaging photoplethysmography to effectively access pulse rate variability[J]. Journal of Biomedical Optics, 2013, 18(6):061205.
[14] 李章俊,王成,朱浩,等.基于光电容积脉搏波描记法的无创连续血压测量[J].中国生物医学工程学报,2012,31(4):607-614. LI Zhang-jun, WANG Cheng, ZHU Hao, et al. Non-invasive continuous blood pressure measurement based on photoplethysmographic[J]. Chinese Journal of Biomedical Engineering, 2012, 31(4):607-614.
[15] KAMSHILIN A A, MIRIDONOV S, TEPLOV V, et al. Photoplethysmographic imaging of high spatial resolution[J]. Biomedical Optics Express, 2011, 2(4):996-1006.
[16] TENG X F, ZHANG Y T. The effect of applied sensor contact force on pulse transit time[J]. Physiological Measurement, 2006, 27(8):675-684.
[17] TENG X F, ZHANG Y T. The effect of contacting force on photoplethysmographic signals[J]. Physiological Measurement, 2004, 25(5):1323-1335.
[18] JONATHAN E, LEAHY M J. Cellular phone-based photoplethysmographic imaging[J]. Journal of Biophotonics, 2011, 4(5):293-296.
[19] JONATHAN E, LEAHY M J. Investigating a smartphone imaging unit for photoplethysmography[J]. Physiological Measurement, 2010, 31(11):N79.
[20] POH M Z, MCDUFF D J, PICARD R W. Advancements in noncontact, multiparameter physiological measurements using a webcam[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(1):7-11.
[21] HUMPHREYS K, WARD T, MARKHAM C. Noncontact simultaneous dual wavelength photoplethysmography:a further step toward noncontact pulse oximetry[J]. Review of Scientific Instruments, 2007, 78(4):044304.
[22] 肖晓.血压为何会升高[J].药物与人,2004(1):14. XIAO Xiao. Why blood pressure rises[J]. Medicine and People, 2004(1):14.

[1] YU Jian-bo, LI Chuan-feng, LV Jing-xiang. Average combination difference morphological filter analysis on fault signals of rolling bearing[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1845-1853.
[2] HAO Jing, DU Tai-hang, JIANG Chun-dong, CHEN Tong-hai. Strengthening strategy of parameter-tuning cascaded stochastic resonance[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(10): 2084-2092.
[3] BANG Cen, DIAO Min-Jian, ZHENG Ya-Min. Fast carrier synchronization in TCM-8PSK shortpacket
fast  frequencyhopping system
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(4): 625-631.
[4] GU Yu-Jie, SHI Chi-Guo, LI Yu, et al. Secondary sample based Bayesian beamforming[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(5): 812-816.