Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (11): 2280-2289    DOI: 10.3785/j.issn.1008-973X.2024.11.009
    
Lightweight LiDAR-IMU odometry based on improved Kalman filter
Fanrui LUO1(),Zhenyu LIU1,*(),Jiahui REN2,Xiaoyu LI1,Yang CHENG1
1. School of Information Science and Engineering, Shenyang University of Technology, Shenyang 310058, China
2. School of Software, Liaoning University of Technology, Jinzhou 310058, China
Download: HTML     PDF(3832KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

LCG-LIO was proposed based on the FAST-LIO2 aiming at the problem of real-time localization and running poor stability of mobile robot. LCG-LIO exhibited lower computational complexity and increased localization accuracy compared with FAST-LIO2. The LCG-LIO frontend incorporated a method for extracting and segmenting high-quality plane and ground points by using the proposed bidirectional dimensionality reduction curvature filter in contrast to FAST-LIO2. LCG-LIO balances the number of plane and ground points through the pseudo occupancy of point clouds. Improvements were made to the observation error equations and the construction of its Jacobian matrix for the Kalman filter in the backend optimization. The GPS constraint was incorporated to the observation error equation by pseudo-trajectory weighting method, and cumulative odometry drift was corrected. Experimental validation was performed by using the KITTI dataset and self-collected datasets. Results showed that the accuracy and efficiency of the proposed method were improved by 55.13% and 53.01% compared with FAST-LIO2. The proposed method for integrating GPS has higher feasibility than the factor graph optimization in LIO-SAM.



Key wordsLiDAR-IMU odometry      feature extraction      improved Kalman filtering      GPS constraint     
Received: 28 August 2023      Published: 23 October 2024
CLC:  TP 393  
Fund:  辽宁省应用基础研究计划资助项目(2023JH2/101300225).
Corresponding Authors: Zhenyu LIU     E-mail: 2354971839@qq.com;liuzhenyu@sut.edu.cn
Cite this article:

Fanrui LUO,Zhenyu LIU,Jiahui REN,Xiaoyu LI,Yang CHENG. Lightweight LiDAR-IMU odometry based on improved Kalman filter. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2280-2289.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.11.009     OR     https://www.zjujournals.com/eng/Y2024/V58/I11/2280


基于改进卡尔曼滤波的轻量级激光惯性里程计

针对移动机器人长期的实时定位和运行的稳定性较差的问题,在激光里程计FAST-LIO2的基础上,提出LCG-LIO,其较FAST-LIO2具有更少的计算量和更高的定位精度. 相较于FAST -LIO2,LCG-LIO前端加入了提出的双向降维曲率滤波的高质量平面与地面点云提取和分割的方法,通过点云伪占用的方法,平衡了平面和地面点的数量. 在后端优化中,改进了卡尔曼滤波的观测误差方程和观测误差雅可比矩阵的构建方法,在观测误差方程中加入了GPS 约束,通过伪轨迹加权的方法,纠正了里程计的累计漂移. 通过KITTI数据集和自己采集的数据集,对提出的方法进行实验. 结果表明,提出方法的精度和效率较FAST-LIO2提高了55.13%和53.01%,提出的GPS信息融合方法较LIO-SAM中的因子图优化方法具有更高的可行性.


关键词: 激光惯性里程计,  特征提取,  改进的卡尔曼滤波,  GPS约束 
Fig.1 Overall framework of LCG-LIO system
Fig.2 Diagram of bidirectional dimensionality reduction curvature filter
Fig.3 Feature extraction results
Fig.4 Schematic diagram of GPS constraints and pseudo trajectory weighting
Fig.5 KITTI operation result
Fig.6 KITTI operation trajectory
Fig.7 KITTI operation partial detail trajectory
里程计算法$ {\partial _{\max}} $$ {\partial _{{\mathrm{mean}}}} $$ {\partial _{{\mathrm{median}}}} $$ {\partial _{{\mathrm{min}}}} $$ {\partial _{{\mathrm{rmse}}}} $
FAST-LIO236.13118.36918.2392.54120.417
LCG-LIO不添加GPS25.84810.4689.7122.54811.264
LCG-LIO23.7569.9398.5893.2099.162
Tab.1 Absolute pose error of KITTI operation
Fig.8 Operation result of self-collected dataset
里程计算法$ \Delta x $$ \Delta y $$ \Delta z $总体回环误差
LIO-SAM0.1200.2410.8800.920
LCG-LIO0.0400.0330.0030.052
Tab.2 Self collected dataset running loopback error
方法Npt1/mst2/mst/ms
FAST-LIO230156030.01230.012
LCG-LIO不添加GPS约束52125.7638.03213.795
LCG-LIO52125.7638.34314.106
Tab.3 Average time consumption of each module
[1]   MORENO L, GARRIDO S, BLANCO D, et al Differential evolution solution to the SLAM problem[J]. Robotics and Autonomous Systems, 2009, 57 (4): 441- 450
doi: 10.1016/j.robot.2008.05.005
[2]   KHAN M U, ZAIDI S A A, ISHTIAQ A, et al. A comparative survey of lidar-slam and lidar based sensor technologies [C] // Mohammad Ali Jinnah University International Conference on Computing. Karachi: IEEE, 2021: 1-8.
[3]   HUANG L. Review on LiDAR-based SLAM techniques [C] // International Conference on Signal Processing and Machine Learning. Stanford: IEEE, 2021: 163-168.
[4]   赵洋, 刘国良, 田国会, 等 基于深度学习的视觉SLAM综述[J]. 机器人, 2017, 39 (6): 889- 896
ZHAO Yang, LIU Guoliang, TIAN Guohui, et al A survey of visual SLAM based on deep learning[J]. Robot, 2017, 39 (6): 889- 896
[5]   蒋林, 刘林锐, 周安娜, 等 基于运动预测的改进ORB-SLAM算法[J]. 浙江大学学报: 工学版, 2023, 57 (1): 170- 177
JIANG Lin, LIU Linrui, ZHOU Anna, et al Improved ORB-SLAM algorithm based on motion prediction[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (1): 170- 177
[6]   李帅鑫, 李广云, 王力, 等 LiDAR/IMU紧耦合的实时定位方法[J]. 自动化学报, 2021, 47 (6): 1377- 1389
LI Shuaixin, LI Guangyun, WANG Li, et al LiDAR/IMU tightly coupled real-time localization method[J]. Acta Automatica Sinica, 2021, 47 (6): 1377- 1389
[7]   BESL P J, MCKAY N D A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14 (2): 239- 256
doi: 10.1109/34.121791
[8]   CHEN Yang, MEDIONI G Object modelling by registration of multiple range images[J]. Image and Vision Computing, 1992, 10 (3): 145- 155
doi: 10.1016/0262-8856(92)90066-C
[9]   LOW K L Linear least-squares optimization for point-to-plane ICP surface registration[J]. Chapel Hill, University of North Carolina, 2004, 4 (10): 1- 3
[10]   SEGAL A, HAEHNEL D, THRUN S. Generalized-ICP [C] // Robotics: Science and Systems. Seattle: MIT Press, 2009: 435.
[11]   ZHANG Ji, SINGH S. LOAM: lidar odometry and mapping in real-time [C] // Robotics: Science and Systems. Berkeley: RSS, 2014, 2(9): 1-9.
[12]   LIN Jiarong, ZHANG Fu. Loam livox: a fast, robust, high-precision LiDAR odometry and mapping package for LiDARs of small FoV [C] // IEEE International Conference on Robotics and Automation. Paris: IEEE, 2020: 3126-3131.
[13]   SHAN Tixiao, ENGLOT B. Lego-loam: lightweight and ground-optimized lidar odometry and mapping on variable terrain [C] // IEEE/RSJ International Conference on Intelligent Robots and Systems . Madrid: IEEE, 2018: 4758-4765.
[14]   WANG Han, WANG Chen, CHEN Chunlin, et al. F-loam: fast lidar odometry and mapping [C] // IEEE/RSJ International Conference on Intelligent Robots and Systems. Prague: IEEE, 2021: 4390-4396.
[15]   JIAO Jianhao, YE Haoyang, ZHU Yilong, et al Robust odometry and mapping for multi-lidar systems with online extrinsic calibration[J]. IEEE Transactions on Robotics, 2021, 38 (1): 351- 371
[16]   YE Haoyang, CHEN Yuying, LIU Meng. Tightly coupled 3d lidar inertial odometry and mapping [C] // International Conference on Robotics and Automation. Montreal: IEEE, 2019: 3144-3150.
[17]   SHAN Tixiao, ENGLOT B, MEYERS D, et al. Lio-sam: tightly-coupled lidar inertial odometry via smoothing and mapping [C] // IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas: IEEE, 2020: 5135-5142.
[18]   QIN Chao, YE Haoyang, PRANATA C E, et al. Lins: a lidar-inertial state estimator for robust and efficient navigation [C] // IEEE International Conference on Robotics and Automation. Paris: IEEE, 2020: 8899-8906.
[19]   LV Jiajun, HU Kewei, XU Jinhang, et al. Clins: continuous-time trajectory estimation for LiDAR-inertial system [C] // IEEE/RSJ International Conference on Intelligent Robots and Systems. Prague: IEEE, 2021: 6657-6663.
[20]   XU Wei, ZHANG Fu Fast-LIO: a fast, robust lidar-inertial odometry package by tightly-coupled iterated Kalman filter[J]. IEEE Robotics and Automation Letters, 2021, 6 (2): 3317- 3324
doi: 10.1109/LRA.2021.3064227
[21]   XU Wei, CAI Yixi, HE Dongjiao, et al Fast-lio2: fast direct lidar-inertial odometry[J]. IEEE Transactions on Robotics, 2022, 38 (4): 2053- 2073
doi: 10.1109/TRO.2022.3141876
[22]   BAI Chunge, XIAO Tao, CHEN Yajie, et al Faster-LIO: lightweight tightly coupled LiDAR-inertial odometry using parallel sparse incremental voxels[J]. IEEE Robotics and Automation Letters, 2022, 7 (2): 4861- 4868
doi: 10.1109/LRA.2022.3152830
[23]   罗欣, 丁晓军 地面移动作业机器人运动规划与控制研究综述[J]. 哈尔滨工业大学学报, 2021, 53 (1): 1- 15
LUO Xin, DING Xiaojun Research and prospective on motion planning and control of ground mobile manipulators[J]. Journal of Harbin Institute of Technology, 2021, 53 (1): 1- 15
[24]   朱大奇, 颜明重 移动机器人路径规划技术综述[J]. 控制与决策, 2010, 25 (7): 961- 967
ZHU Daqi, YAN Mingzhong Survey on technology of mobile robot path planning[J]. Control and Decision, 2010, 25 (7): 961- 967
[25]   GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? the kitti vision benchmark suite [C] // IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE, 2012: 3354-3361.
[1] Junjie LIN,Yaguang ZHU,Chunchao LIU,Haoyang LIU. Digital twin system of legged robot for mobile operation[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1956-1969.
[2] Haijun WANG,Tao WANG,Cijun YU. CFRP ultrasonic detection defect identification method based on recursive quantitative analysis[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1604-1617.
[3] Kang HAN,Hongfei ZHAN,Junhe YU,Rui WANG. Rolling bearing fault diagnosis based on dilated convolution and enhanced multi-scale feature adaptive fusion[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1285-1295.
[4] Bo ZHONG,Pengfei WANG,Yiqiao WANG,Xiaoling WANG. Survey of deep learning based EEG data analysis technology[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 879-890.
[5] Lin JIANG,Lin-rui LIU,An-na ZHOU,Lu HAN,Ping-yuan LI. Improved ORB-SLAM algorithm based on motion prediction[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 170-177.
[6] Yan BIAN,Yu-sheng GONG,Guo-peng MA,Chang WANG. Water extraction from unmanned aerial vehicle remote sensing images[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 764-774.
[7] Ze-xin XU,Li-juan DUAN,Wen-jian WANG,Qing EN. Code vulnerability detection method based on contextual feature fusion[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2260-2270.
[8] Fang LIU,Zhen WANG,Rui-di LIU,Kai WANG. Short-term forecasting method of wind power generation based on BP neural network with combined loss function[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 594-600.
[9] Yi-xiong FENG,Kang-jie LI,Yi-cong GAO,Hao ZHEN,Jian-rong TAN. Shaft surface defect detection method based on feature and morphology reconstruction[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 427-434.
[10] Mei-ying QIAO,Xia-xia TANG,Shu-hao YAN,Jian-ke SHI. Bearing fault diagnosis based on improved sparse filter and deep network fusion[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2301-2309.
[11] Xiao-hu ZHAO,Liang-fei YIN,Cheng-long ZHAO. Image captioning based on global-local feature and adaptive-attention[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 126-134.
[12] Gui-ran HE,Qi LI,Hua-jun FENG,Zhi-hai XU,Yue-ting CHEN. Dual-focal camera continuous digital zoom based onCNN and feature extraction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1182-1189.
[13] Yue DONG,Hua-jun FENG,Zhi-hai XU,Yue-ting CHEN,Qi LI. Attention Res-Unet: an efficient shadow detection algorithm[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 373-381.
[14] Xiang-long ZHAO,Jie CHEN,Rong-jing HONG,Hua WANG,Yuan-yuan LI. Adaptive feature extraction method for slewing bearing based on Wavelet leader and optimized isometric mapping method[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2092-2101.
[15] TONG Shui-guang, ZHANG Yi-dong, XU Jian, CONG Fei-yun. Spectral band refined composite multiscale fuzzy entropy and its application in fault diagnosis of rolling bearings[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1509-1516.